首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The property of identifiability is an important consideration on estimating the parameters in a mixture of distributions. Also classification of a random variable based on a mixture can be meaning fully discussed only if the class of all finite mixtures is identifiable. The problem of identifiability of finite mixture of Gompertz distributions is studied. A procedure is presented for finding maximum likelihood estimates of the parameters of a mixture of two Gompertz distributions, using classified and unclassified observations. Based on small sample size, estimation of a nonlinear discriminant function is considered. Throughout simulation experiments, the performance of the corresponding estimated nonlinear discriminant function is investigated.  相似文献   

2.
We consider the problem of making inferences about extreme values from a sample. The underlying model distribution is the generalized extreme-value (GEV) distribution, and our interest is in estimating the parameters and quantiles of the distribution robustly. In doing this we find estimates for the GEV parameters based on that part of the data which is well fitted by a GEV distribution. The robust procedure will assign weights between 0 and 1 to each data point. A weight near 0 indicates that the data point is not well modelled by the GEV distribution which fits the points with weights at or near 1. On the basis of these weights we are able to assess the validity of a GEV model for our data. It is important that the observations with low weights be carefully assessed to determine whether diey are valid observations or not. If they are, we must examine whether our data could be generated by a mixture of GEV distributions or whether some other process is involved in generating the data. This process will require careful consideration of die subject matter area which led to the data. The robust estimation techniques are based on optimal B-robust estimates. Their performance is compared to the probability-weighted moment estimates of Hosking et al. (1985) in both simulated and real data.  相似文献   

3.
ABSTRACT

The generalized extreme value distribution and its particular case, the Gumbel extreme value distribution, are widely applied for extreme value analysis. The Gumbel distribution has certain drawbacks because it is a non-heavy-tailed distribution and is characterized by constant skewness and kurtosis. The generalized extreme value distribution is frequently used in this context because it encompasses the three possible limiting distributions for a normalized maximum of infinite samples of independent and identically distributed observations. However, the generalized extreme value distribution might not be a suitable model when each observed maximum does not come from a large number of observations. Hence, other forms of generalizations of the Gumbel distribution might be preferable. Our goal is to collect in the present literature the distributions that contain the Gumbel distribution embedded in them and to identify those that have flexible skewness and kurtosis, are heavy-tailed and could be competitive with the generalized extreme value distribution. The generalizations of the Gumbel distribution are described and compared using an application to a wind speed data set and Monte Carlo simulations. We show that some distributions suffer from overparameterization and coincide with other generalized Gumbel distributions with a smaller number of parameters, that is, are non-identifiable. Our study suggests that the generalized extreme value distribution and a mixture of two extreme value distributions should be considered in practical applications.  相似文献   

4.
Estimation is considered for a class of models which are simple extensions of the generalized extreme value (GEV) distribution, suitable for introducing time dependence into models which are otherwise only spatially dependent. Maximum likelihood estimation and the method of probability weighted moment estimation are identified as most useful for fitting these models. The relative merits of these methods, and others, is discussed in the context of estimation for the GEV distribution, with particular reference to the non - regularity of the GEV distribution for particular parameter values. In the case of maximum likelihood estimation, first and second derivatives of the log likelihood are evaluated for the models.  相似文献   

5.
To model extreme spatial events, a general approach is to use the generalized extreme value (GEV) distribution with spatially varying parameters such as spatial GEV models and latent variable models. In the literature, this approach is mostly used to capture spatial dependence for only one type of event. This limits the applications to air pollutants data as different pollutants may chemically interact with each other. A recent advancement in spatial extremes modelling for multiple variables is the multivariate max-stable processes. Similarly to univariate max-stable processes, the multivariate version also assumes standard distributions such as unit-Fréchet as margins. Additional modelling is required for applications such as spatial prediction. In this paper, we extend the marginal methods such as spatial GEV models and latent variable models into a multivariate setting based on copulas so that it is capable of handling both the spatial dependence and the dependence among multiple pollutants. We apply our proposed model to analyse weekly maxima of nitrogen dioxide, sulphur dioxide, respirable suspended particles, fine suspended particles, and ozone collected in Pearl River Delta in China.  相似文献   

6.
It is well recognized that the generalized extreme value (GEV) distribution is widely used for any extreme events. This notion is based on the study of discrete choice behavior; however, there is a limit for predicting the distribution at ungauged sites. Hence, there have been studies on spatial dependence within extreme events in continuous space using recorded observations. We model the annual maximum daily rainfall data consisting of 25 locations for the period from 1982 to 2013. The spatial GEV model that is established under observations is assumed to be mutually independent because there is no spatial dependency between the stations. Furthermore, we divide the region into two regions for a better model fit and identify the best model for each region. We show that the regional spatial GEV model reflects the spatial pattern well compared with the spatial GEV model over the entire region as the local GEV distribution. The advantage of spatial extreme modeling is that more robust return levels and some indices of extreme rainfall can be obtained for observed stations as well as for locations without observed data. Thus, the model helps to determine the effects and assessment of vulnerability due to heavy rainfall in northeast Thailand.  相似文献   

7.
The popular generalized extreme value (GEV) distribution has not been a flexible model for extreme values in many areas. We propose a generalization – referred to as the Kumaraswamy GEV distribution – and provide a comprehensive treatment of its mathematical properties. We estimate its parameters by the method of maximum likelihood and provide the observed information matrix. An application to some real data illustrates flexibility of the new model. Finally, some bivariate generalizations of the model are proposed.  相似文献   

8.
A new class of finite mixture discrete choice models, denoted FinMix (fīn m?ks), is introduced. These arise from the combination of a finite number of core Generalized Extreme Value (GEV) models to achieve more flexible functional forms, particularly in terms of error covariance structures. Example members of the class include combinations of (1) Multinomial Logit (MNL) models with differing scales, (2) multinomial logit with nested MNL models, (3) tree extreme value models with differing preference trees, and so on. Compatibility of FinMix models with utility maximization is easily determined, which permits empirical investigation of the suitability of specific model forms for economic evaluation exercises.  相似文献   

9.
The four-parameter kappa distribution (K4D) is a generalized form of some commonly used distributions such as generalized logistic, generalized Pareto, generalized Gumbel, and generalized extreme value (GEV) distributions. Owing to its flexibility, the K4D is widely applied in modeling in several fields such as hydrology and climatic change. For the estimation of the four parameters, the maximum likelihood approach and the method of L-moments are usually employed. The L-moment estimator (LME) method works well for some parameter spaces, with up to a moderate sample size, but it is sometimes not feasible in terms of computing the appropriate estimates. Meanwhile, using the maximum likelihood estimator (MLE) with small sample sizes shows substantially poor performance in terms of a large variance of the estimator. We therefore propose a maximum penalized likelihood estimation (MPLE) of K4D by adjusting the existing penalty functions that restrict the parameter space. Eighteen combinations of penalties for two shape parameters are considered and compared. The MPLE retains modeling flexibility and large sample optimality while also improving on small sample properties. The properties of the proposed estimator are verified through a Monte Carlo simulation, and an application case is demonstrated taking Thailand’s annual maximum temperature data.  相似文献   

10.
In this paper, the mixture model of k extreme value distributions is investigated. Using the Laplace transform of extreme value distributions given in terms of the Krätzel function, we first prove the identifiability of the class of arbitrary mixtures of extreme-value distributions of type 1 and type 2. We then find the estimates for the parameters of the mixture of two extreme-value distributions, including the three different types, via the EM algorithm. The performance of the estimates is tested by Monte Carlo simulation.  相似文献   

11.
Extreme value theory models have found applications in myriad fields. Maximum likelihood (ML) is attractive for fitting the models because it is statistically efficient and flexible. However, in small samples, ML is biased to O(N?1) and some classical hypothesis tests suffer from size distortions. This paper derives the analytical Cox–Snell bias correction for the generalized extreme value (GEV) model, and for the model's extension to multiple order statistics (GEVr). Using simulations, the paper compares this correction to bootstrap-based bias corrections, for the generalized Pareto, GEV, and GEVr. It then compares eight approaches to inference with respect to primary parameters and extreme quantiles, some including corrections. The Cox–Snell correction is not markedly superior to bootstrap-based correction. The likelihood ratio test appears most accurately sized. The methods are applied to the distribution of geomagnetic storms.  相似文献   

12.
Abstract

In extreme value theory for ordinary order statistics, there are many results that characterize the domains of attraction of the three extreme value distributions. In this article, we consider a subclass of generalized order statistics for which also three types of limit distributions occur. We characterize the domains of attraction of these limit distributions by means of necessary and/or sufficient conditions for an underlying distribution function to belong to the respective domain of attraction. Moreover, we compare the domains of attraction of the limit distributions for extreme generalized order statistics with the domains of attraction of the extreme value distributions.  相似文献   

13.
In this article, we propose the finite mixture of two Burr Type-III distributions (MTBIIID). First, we formulate the proposed model with some properties and prove the identifiability property. Next, we obtain the maximum likelihood estimates (MLEs) of the unknown parameters of MTBIIID under classified and unclassified observations. Also, we estimate the nonlinear discriminant function of the underlying model. In addition, we calculate the total probabilities of misclassification as well as the percentage bias. Further, we investigate the performance of the all results through series of the simulation experiments by the means of the relative efficiencies.  相似文献   

14.
The classification of a random variable based on a mixture can be meaningfully discussed only if the class of all finite mixtures is identifiable. In this paper, we find the maximum-likelihood estimates of the parameters of the mixture of two inverse Weibull distributions by using classified and unclassified observations. Next, we estimate the nonlinear discriminant function of the underlying model. Also, we calculate the total probabilities of misclassification as well as the percentage bias. In addition, we investigate the performance of all results through a series of simulation experiments by means of relative efficiencies. Finally, we analyse some simulated and real data sets through the findings of the paper.  相似文献   

15.
Abstract

The generalized extreme value (GEV) distribution is known as the limiting result for the modeling of maxima blocks of size n, which is used in the modeling of extreme events. However, it is possible for the data to present an excessive number of zeros when dealing with extreme data, making it difficult to analyze and estimate these events by using the usual GEV distribution. The Zero-Inflated Distribution (ZID) is widely known in literature for modeling data with inflated zeros, where the inflator parameter w is inserted. The present work aims to create a new approach to analyze zero-inflated extreme values, that will be applied in data of monthly maximum precipitation, that can occur during months where there was no precipitation, being these computed as zero. An inference was made on the Bayesian paradigm, and the parameter estimation was made by numerical approximations of the posterior distribution using Markov Chain Monte Carlo (MCMC) methods. Time series of some cities in the northeastern region of Brazil were analyzed, some of them with predominance of non-rainy months. The results of these applications showed the need to use this approach to obtain more accurate and with better adjustment measures results when compared to the standard distribution of extreme value analysis.  相似文献   

16.
This paper develops Bayesian inference of extreme value models with a flexible time-dependent latent structure. The generalized extreme value distribution is utilized to incorporate state variables that follow an autoregressive moving average (ARMA) process with Gumbel-distributed innovations. The time-dependent extreme value distribution is combined with heavy-tailed error terms. An efficient Markov chain Monte Carlo algorithm is proposed using a state-space representation with a finite mixture of normal distributions to approximate the Gumbel distribution. The methodology is illustrated by simulated data and two different sets of real data. Monthly minima of daily returns of stock price index, and monthly maxima of hourly electricity demand are fit to the proposed model and used for model comparison. Estimation results show the usefulness of the proposed model and methodology, and provide evidence that the latent autoregressive process and heavy-tailed errors play an important role to describe the monthly series of minimum stock returns and maximum electricity demand.  相似文献   

17.
A two shape parameter generalization of the well known family of the Weibull distributions is presented and its properties are studied. The properties examined include the skewness and kurtosis, density shapes and tail character, and relation of the members of the family to those of the Pear-sonian system. The members of the family are grouped in four classes in terms of these properties. Also studied are the extreme value distributions and the limiting distributions of the extreme spacings for the members of the family. It is seen that the generalized Weibull family contains distributions with a variety of density and tail shapes, and distributions which in terms of skewness and kurtosis approximate the main types of curves of the Pearson system. Furthermore, as shown by the extreme value and extreme spacings distributions the family contains short, medium and long tailed distributions. The quantile and density quantile functions are the principle tools used for the structural analysis of the family.  相似文献   

18.
In the classical discriminant analysis, when two multivariate normal distributions with equal variance–covariance matrices are assumed for two groups, the classical linear discriminant function is optimal with respect to maximizing the standardized difference between the means of two groups. However, for a typical case‐control study, the distributional assumption for the case group often needs to be relaxed in practice. Komori et al. (Generalized t ‐statistic for two‐group classification. Biometrics 2015, 71: 404–416) proposed the generalized t ‐statistic to obtain a linear discriminant function, which allows for heterogeneity of case group. Their procedure has an optimality property in the class of consideration. We perform a further study of the problem and show that additional improvement is achievable. The approach we propose does not require a parametric distributional assumption on the case group. We further show that the new estimator is efficient, in that no further improvement is possible to construct the linear discriminant function more efficiently. We conduct simulation studies and real data examples to illustrate the finite sample performance and the gain that it produces in comparison with existing methods.  相似文献   

19.
A pivotal characteristic of credit defaults that is ignored by most credit scoring models is the rarity of the event. The most widely used model to estimate the probability of default is the logistic regression model. Since the dependent variable represents a rare event, the logistic regression model shows relevant drawbacks, for example, underestimation of the default probability, which could be very risky for banks. In order to overcome these drawbacks, we propose the generalized extreme value regression model. In particular, in a generalized linear model (GLM) with the binary-dependent variable we suggest the quantile function of the GEV distribution as link function, so our attention is focused on the tail of the response curve for values close to one. The estimation procedure used is the maximum-likelihood method. This model accommodates skewness and it presents a generalisation of GLMs with complementary log–log link function. We analyse its performance by simulation studies. Finally, we apply the proposed model to empirical data on Italian small and medium enterprises.  相似文献   

20.
In this paper, the identifiability of a finite mixture of generalized exponential distributions (GE(τ, α)) is proved and the maximum likelihood estimates (MLE’s) of the parameters are obtained using EM algorithm based on a general form of right-censored failure times. The results are specialized to type-I and type-II censored samples. A real data set is introduced and analyzed using a mixture of two GE(τ, α) distributions and also using a mixture of two Weibull(α, β) distributions. A comparison is carried out between the mentioned mixtures based on the corresponding Kolmogorov–Smirnov (K–S) test statistic to emphasize that the GE(τ, α) mixture model fits the data better than the other mixture model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号