首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper addresses the problems of frequentist and Bayesian estimation for the unknown parameters of generalized Lindley distribution based on lower record values. We first derive the exact explicit expressions for the single and product moments of lower record values, and then use these results to compute the means, variances and covariance between two lower record values. We next obtain the maximum likelihood estimators and associated asymptotic confidence intervals. Furthermore, we obtain Bayes estimators under the assumption of gamma priors on both the shape and the scale parameters of the generalized Lindley distribution, and associated the highest posterior density interval estimates. The Bayesian estimation is studied with respect to both symmetric (squared error) and asymmetric (linear-exponential (LINEX)) loss functions. Finally, we compute Bayesian predictive estimates and predictive interval estimates for the future record values. To illustrate the findings, one real data set is analyzed, and Monte Carlo simulations are performed to compare the performances of the proposed methods of estimation and prediction.  相似文献   

2.
A general explanation of the fiducial confidence interval and its construction for a class of parameters in which the distributions are stochastically increasing or decreasing is provided. Major differences between the fiducial interval and Bayesian and frequentist intervals are summarized. Applications of fiducial inference in evaluating pre-data frequentist intervals and general post-data intervals are discussed.  相似文献   

3.
The two-parameter generalized exponential (GE) distribution was introduced by Gupta and Kundu [Gupta, R.D. and Kundu, D., 1999, Generalized exponential distribution. Australian and New Zealand Journal of Statistics, 41(2), 173–188.]. It was observed that the GE can be used in situations where a skewed distribution for a nonnegative random variable is needed. In this article, the Bayesian estimation and prediction for the GE distribution, using informative priors, have been considered. Importance sampling is used to estimate the parameters, as well as the reliability function, and the Gibbs and Metropolis samplers data sets are used to predict the behavior of further observations from the distribution. Two data sets are used to illustrate the Bayesian procedure.  相似文献   

4.
In this paper we discuss constructing confidence intervals based on asymptotic generalized pivotal quantities (AGPQs). An AGPQ associates a distribution with the corresponding parameter, and then an asymptotically correct confidence interval can be derived directly from this distribution like Bayesian or fiducial interval estimates. We provide two general procedures for constructing AGPQs. We also present several examples to show that AGPQs can yield new confidence intervals with better finite-sample behaviors than traditional methods.  相似文献   

5.
The likelihood function is often used for parameter estimation. Its use, however, may cause difficulties in specific situations. In order to circumvent these difficulties, we propose a parameter estimation method based on the replacement of the likelihood in the formula of the Bayesian posterior distribution by a function which depends on a contrast measuring the discrepancy between observed data and a parametric model. The properties of the contrast-based (CB) posterior distribution are studied to understand what the consequences of incorporating a contrast in the Bayes formula are. We show that the CB-posterior distribution can be used to make frequentist inference and to assess the asymptotic variance matrix of the estimator with limited analytical calculations compared to the classical contrast approach. Even if the primary focus of this paper is on frequentist estimation, it is shown that for specific contrasts the CB-posterior distribution can be used to make inference in the Bayesian way.The method was used to estimate the parameters of a variogram (simulated data), a Markovian model (simulated data) and a cylinder-based autosimilar model describing soil roughness (real data). Even if the method is presented in the spatial statistics perspective, it can be applied to non-spatial data.  相似文献   

6.
Bayesian methods have the potential to confer substantial advantages over frequentist when the assumed prior is approximately correct, but otherwise can perform poorly. Therefore, estimators and other inferences that strike a compromise between Bayes and frequentist optimality are attractive. To evaluate potential trade-offs, we study Bayes vs. frequentist risk under Gaussian sampling for families of point estimators and interval estimators. Bayes/frequentist compromises for interval estimation are more challenging than for point estimation, since performance involves an interplay between coverage and length. Each family allows ‘purchasing’ improved frequentist performance by allowing a small increase in Bayes risk over the Bayes rule. Any degree of increase can be specified, thus enabling greater or lesser trade-offs between Bayes and frequentist risk.  相似文献   

7.
Just as frequentist hypothesis tests have been developed to check model assumptions, prior predictive p-values and other Bayesian p-values check prior distributions as well as other model assumptions. These model checks not only suffer from the usual threshold dependence of p-values, but also from the suppression of model uncertainty in subsequent inference. One solution is to transform Bayesian and frequentist p-values for model assessment into a fiducial distribution across the models. Averaging the Bayesian or frequentist posterior distributions with respect to the fiducial distribution can reproduce results from Bayesian model averaging or classical fiducial inference.  相似文献   

8.
The aim of this paper is to estimate parameters of generalized Pareto distribution based on generalized order statistics. Some non-Bayesian methods, such as MLE, bootstrap and unbiased estimators have been obtained to develop point and interval estimations. Bayesian estimations have also been derived under LSE and LINEX loss functions. To compare the performances of the employed methods, numerical results have been computed. To illustrate dependence and association properties of generalized order statistics, correlation coefficient and some informational measures in closed form have been obtained.  相似文献   

9.
For noninformative nonparametric estimation of finite population quantiles under simple random sampling, estimation based on the Polya posterior is similar to estimation based on the Bayesian approach developed by Ericson (J. Roy. Statist. Soc. Ser. B 31 (1969) 195) in that the Polya posterior distribution is the limit of Ericson's posterior distributions as the weight placed on the prior distribution diminishes. Furthermore, Polya posterior quantile estimates can be shown to be admissible under certain conditions. We demonstrate the admissibility of the sample median as an estimate of the population median under such a set of conditions. As with Ericson's Bayesian approach, Polya posterior-based interval estimates for population quantiles are asymptotically equivalent to the interval estimates obtained from standard frequentist approaches. In addition, for small to moderate sized populations, Polya posterior-based interval estimates for quantiles of a continuous characteristic of interest tend to agree with the standard frequentist interval estimates.  相似文献   

10.
This paper focuses on Bayesian shrinkage methods for covariance matrix estimation. We examine posterior properties and frequentist risks of Bayesian estimators based on new hierarchical inverse-Wishart priors. More precisely, we give the conditions for the existence of the posterior distributions. Advantages in terms of numerical simulations of posteriors are shown. A simulation study illustrates the performance of the estimation procedures under three loss functions for relevant sample sizes and various covariance structures.  相似文献   

11.
In this paper, the estimation of parameters for a generalized inverted exponential distribution based on the progressively first-failure type-II right-censored sample is studied. An expectation–maximization (EM) algorithm is developed to obtain maximum likelihood estimates of unknown parameters as well as reliability and hazard functions. Using the missing value principle, the Fisher information matrix has been obtained for constructing asymptotic confidence intervals. An exact interval and an exact confidence region for the parameters are also constructed. Bayesian procedures based on Markov Chain Monte Carlo methods have been developed to approximate the posterior distribution of the parameters of interest and in addition to deduce the corresponding credible intervals. The performances of the maximum likelihood and Bayes estimators are compared in terms of their mean-squared errors through the simulation study. Furthermore, Bayes two-sample point and interval predictors are obtained when the future sample is ordinary order statistics. The squared error, linear-exponential and general entropy loss functions have been considered for obtaining the Bayes estimators and predictors. To illustrate the discussed procedures, a set of real data is analyzed.  相似文献   

12.
The object of the paper is to provide recipes for various fiducial inferences on a parameter under nonparametric situations. First, the fiducial empirical distribution of a random variable was introduced under nonparametric situations. And its almost sure behavior was established. Then based on it, fiducial model and hence fiducial distribution of a parameter are obtained. Further fiducial intervals of parameters as functionals of the population were constructed. Some of their frequentist properties were investigated under some mild conditions. Besides, p-values of some test hypotheses and their asymptotical properties were also given. Three applications of above results and further results were provided. For the mean, simulations on its interval estimator and hypothesis testing were conducted and their results suggest that the fiducial method performs better than others considered here.  相似文献   

13.
In this paper, we consider fiducial inference for the unknown parameters of the Birnbaum-Saunders distribution. Two generalized fiducial distributions of the parameters are obtained. One is based on the inverse of the structural equation, and the fiducial estimates of the parameters are obtained by a simulation method. The other is based on the method of [Hannig J. Generalized fiducial inference via discretization. Stat. Sinica. 2013;23:489–514], then we use adaptive rejection Metropolis sampling to get the fiducial estimates. We compare the fiducial estimates with the maximum likelihood estimates and Bayesian estimates by simulations. Two real data sets are analysed for illustration.  相似文献   

14.
In this paper, based on an adaptive Type-II progressively censored sample from the generalized exponential distribution, the maximum likelihood and Bayesian estimators are derived for the unknown parameters as well as the reliability and hazard functions. Also, the approximate confidence intervals of the unknown parameters, and the reliability and hazard functions are calculated. Markov chain Monte Carlo method is applied to carry out a Bayesian estimation procedure and in turn calculate the credible intervals. Moreover, results from simulation studies assessing the performance of our proposed method are included. Finally, an illustrative example using real data set is presented for illustrating all the inferential procedures developed here.  相似文献   

15.
Based on progressively Type-I interval censored sample, the problem of estimating unknown parameters of a two parameter generalized half-normal(GHN) distribution is considered. Different methods of estimation are discussed. They include the maximum likelihood estimation, midpoint approximation method, approximate maximum likelihood estimation, method of moments, and estimation based on probability plot. Several Bayesian estimates with respect to different symmetric and asymmetric loss functions such as squared error, LINEX, and general entropy is calculated. The Lindley’s approximation method is applied to determine Bayesian estimates. Monte Carlo simulations are performed to compare the performances of the different methods. Finally, analysis is also carried out for a real dataset.  相似文献   

16.
This paper introduces a new bivariate exponential distribution, called the Bivariate Affine-Linear Exponential distribution, to model moderately negative dependent data. The construction and characteristics of the proposed bivariate distribution are presented along with estimation procedures for the model parameters based on maximum likelihood and objective Bayesian analysis. We derive Jeffreys prior and discuss its frequentist properties based on a simulation study and MCMC sampling techniques. A real data set of mercury concentration in largemouth bass from Florida lakes is used to illustrate the methodology.  相似文献   

17.
This article considers inference for the log-normal distribution based on progressive Type I interval censored data by both frequentist and Bayesian methods. First, the maximum likelihood estimates (MLEs) of the unknown model parameters are computed by expectation-maximization (EM) algorithm. The asymptotic standard errors (ASEs) of the MLEs are obtained by applying the missing information principle. Next, the Bayes’ estimates of the model parameters are obtained by Gibbs sampling method under both symmetric and asymmetric loss functions. The Gibbs sampling scheme is facilitated by adopting a similar data augmentation scheme as in EM algorithm. The performance of the MLEs and various Bayesian point estimates is judged via a simulation study. A real dataset is analyzed for the purpose of illustration.  相似文献   

18.
Statistical control charts are often used in industry to monitor processes in the interests of quality improvement. Such charts assume independence and normality of the control statistic, but these assumptions are often violated in practice. To better capture the true shape of the underlying distribution of the control statistic, we utilize the g-and-k distributions to estimate probability limits, the true ARL, and the error in confidence that arises from incorrectly assuming normality. A sensitivity assessment reveals that the extent of error in confidence associated with control chart decision-making procedures increases more rapidly as the distribution becomes more skewed or as the tails of the distribution become longer than those of the normal distribution. These methods are illustrated using both a frequentist and computational Bayesian approach to estimate the g-and-k parameters in two different practical applications. The Bayesian approach is appealing because it can account for prior knowledge in the estimation procedure and yields posterior distributions of parameters of interest such as control limits.  相似文献   

19.
A new distribution called the beta generalized exponential distribution is proposed. It includes the beta exponential and generalized exponential (GE) distributions as special cases. We provide a comprehensive mathematical treatment of this distribution. The density function can be expressed as a mixture of generalized exponential densities. This is important to obtain some mathematical properties of the new distribution in terms of the corresponding properties of the GE distribution. We derive the moment generating function (mgf) and the moments, thus generalizing some results in the literature. Expressions for the density, mgf and moments of the order statistics are also obtained. We discuss estimation of the parameters by maximum likelihood and obtain the information matrix that is easily numerically determined. We observe in one application to a real skewed data set that this model is quite flexible and can be used effectively in analyzing positive data in place of the beta exponential and GE distributions.  相似文献   

20.
The Modulated Power Law process has been recently proposed as a suitable model for describing the failure pattern of repairable systems when both renewal-type behaviour and time trend are present. Unfortunately, the maximum likelihood method provides neither accurate confidence intervals on the model parameters for small or moderate sample sizes nor predictive intervals on future observations.

This paper proposes a Bayes approach, based on both non-informative and vague prior, as an alternative to the classical method. Point and interval estimation of the parameters, as well as point and interval prediction of future failure times, are given. Monte Carlo simulation studies show that the Bayes estimation and prediction possess good statistical properties in a frequentist context and, thus, are a valid alternative to the maximum likelihood approach.

Numerical examples illustrate the estimation and prediction procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号