首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
The effects of applying the normal classificatory rule to a nonnormal population are studied here. These are assessed through the distribution of the misclassification errors in the case of the Edgeworth type distribution. Both theoretical and empirical results are presented. An examination of the latter shows that the effects of this type of nonnormality are marginal. The probability of misclassification of an observation from ∏1, using the appropriate LR rule, is always larger than one using the normal approximation (μ1<μ2). Converse condition holds for the misclassification of an observation from ∏2. Overall error rates are not affected by the skewness factor to any great extent.  相似文献   

2.
This paper deals with the distributions of test statistics for the number of useful discriminant functions and the characteristic roots in canonical discriminant analysis. These asymptotic distributions have been extensively studied when the number p   of variables is fixed, the number q+1q+1 of groups is fixed, and the sample size N tends to infinity. However, these approximations become increasingly inaccurate as the value of p increases for a fixed value of N. On the other hand, we encounter to analyze high-dimensional data such that p is large compared to n. The purpose of the present paper is to derive asymptotic distributions of these statistics in a high-dimensional framework such that q   is fixed, p→∞p, m=n-p+q→∞m=n-p+q, and p/n→c∈(0,1)p/nc(0,1), where n=N-q-1n=N-q-1. Numerical simulation revealed that our new asymptotic approximations are more accurate than the classical asymptotic approximations in a considerably wide range of (n,p,q)(n,p,q).  相似文献   

3.
A multivariate “errors in variables” regression model is proposed which generalizes a model previously considered by Gleser and Watson (1973). Maximum likelihood estimators [MLE's] for the parameters of this model are obtained, and the consistency properties of these estimators are investigated. Distribution of the MLE of the “error” variance is obtained in a simple case while the mean and the variance of the estimator are obtained in this case without appealing to the exact distribution.  相似文献   

4.
In this paper, we establish several connections of the Poisson weight function to overdispersion and underdispersion. Specifically, we establish that the logconvexity (logconcavity) of the mean weight function is a necessary and sufficient condition for overdispersion (underdispersion) when the Poisson weight function does not depend on the original Poisson parameter. We also discuss some properties of the weighted Poisson distributions (WPD). We then introduce a notion of pointwise duality between two WPDs and discuss some associated properties. Next, we present some illustrative examples and provide a discussion on various Poisson weight functions used in practice. Finally, some concluding remarks are made.  相似文献   

5.
Assumptions are given for the strong consistency in the stable case and weak consistency in the instable case of the Least-Square-Estimator of the unknown system-parameters of a inhomogeneous linear stochastic difference equation system with constant coefficients.  相似文献   

6.
The estimation of the mean of an univariate normal population with unknown variance is considered when uncertain non-sample prior information is available. Alternative estimators are defined to incorporate both the sample as well as the non-sample information in the estimation process. Some of the important statistical properties of the restricted, preliminary test, and shrinkage estimators are investigated. The performances of the estimators are compared based on the criteria of unbiasedness and mean square error in order to search for a ‘best’ estimator. Both analytical and graphical methods are explored. There is no superior estimator that uniformly dominates the others. However, if the non-sample information regarding the value of the mean is close to its true value, the shrinkage estimator over performs the rest of the estimators. Received: June 19, 1999; revised version: March 23, 2000  相似文献   

7.
8.
In sampling from a continuous distribution with unknown mean μ and variance σ2 the problem of estimation of μ, when it is known that μ∈(a, ∞) (or μ∈(-∞, b)), is considered. The estimators proposed here lie in the interval (a, ∞) (or (-∞, b)) almost surely. The performance of these estimators is compared to that of some known estimators in the case of sampling from a normal, exponential and a weighted difference of two independent chi-square distributions.  相似文献   

9.
An estimate of the mean residual life function of a complex system of k independent identically distributed components is proposed and studied with emphasis being on the order of normal approximation.  相似文献   

10.
The process comparing the empirical cumulative distribution function of the sample with a parametric estimate of the cumulative distribution function is known as the empirical process with estimated parameters and has been extensively employed in the literature for goodness‐of‐fit testing. The simplest way to carry out such goodness‐of‐fit tests, especially in a multivariate setting, is to use a parametric bootstrap. Although very easy to implement, the parametric bootstrap can become very computationally expensive as the sample size, the number of parameters, or the dimension of the data increase. An alternative resampling technique based on a fast weighted bootstrap is proposed in this paper, and is studied both theoretically and empirically. The outcome of this work is a generic and computationally efficient multiplier goodness‐of‐fit procedure that can be used as a large‐sample alternative to the parametric bootstrap. In order to approximately determine how large the sample size needs to be for the parametric and weighted bootstraps to have roughly equivalent powers, extensive Monte Carlo experiments are carried out in dimension one, two and three, and for models containing up to nine parameters. The computational gains resulting from the use of the proposed multiplier goodness‐of‐fit procedure are illustrated on trivariate financial data. A by‐product of this work is a fast large‐sample goodness‐of‐fit procedure for the bivariate and trivariate t distribution whose degrees of freedom are fixed. The Canadian Journal of Statistics 40: 480–500; 2012 © 2012 Statistical Society of Canada  相似文献   

11.
12.
We are interested in estimating prediction error for a classification model built on high dimensional genomic data when the number of genes (p) greatly exceeds the number of subjects (n). We examine a distance argument supporting the conventional 0.632+ bootstrap proposed for the $n > p$ scenario, modify it for the $n < p$ situation and develop learning curves to describe how the true prediction error varies with the number of subjects in the training set. The curves are then applied to define adjusted resampling estimates for the prediction error in order to achieve a balance in terms of bias and variability. The adjusted resampling methods are proposed as counterparts of the 0.632+ bootstrap when $n < p$ , and are found to improve on the 0.632+ bootstrap and other existing methods in the microarray study scenario when the sample size is small and there is some level of differential expression. The Canadian Journal of Statistics 41: 133–150; 2013 © 2012 Statistical Society of Canada  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号