首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The norm 6A6 = {tr(A′A)}12 of the alias matrix A of a design can be used as a measure for selecting a design. In this paper, an explicit expression for 6A6 will be given for a balanced fractional 2m factorial design of resolution 2l + 1 which obtained from a simple array with parameters (m; λ0, λ1,…, λm). This array is identical with a balanced array of strength m, m constraints and index set {λ0, λ1,…, λm}. In the class of the designs of resolution V (l = 2) obtained from S-arrays, ones which minimize 6A6 will be presented for any fixed N assemblies satisfying (i) m = 4, 11 ? N ? 16, (ii) m = 5, 16 ? N ? 32, and (iii) m = 6, 22 ? N ? 40.  相似文献   

2.
We consider a search design for the 2m type such that at most knonnegative effects can be searched among (l+1)-factor interactions and estimated along with the effects up to l- factor interactions, provided (l+1)-factor and higher order interactions are negligible except for the k effects. We investigate some properties of a search design which is yielded by a balanced 2m design of resolution 2l+1 derived from a balanced array of strength 2(l+1). A necessary and sufficient condition for the balanced design of resolution 2l+1 to be a search design for k=1 is given. Optimal search designs for k=1 in the class of the balanced 2m designs of resolution V (l=2), with respect to the AD-optimality criterion given by Srivastava (1977), with N assemblies are also presented, where the range of (m,N) is (m=6; 28≤N≤41), (m=7; 35≤N≤63) and (m=8; 44≤N≤74).  相似文献   

3.
This paper presents the trace of the covariance matrix of the estimates of effects based on a fractional 2m factorial (2m-FF) design T of resolution V for the following two cases: One is the case where T is constructed by adding some restricted assemblies to an orthogonal array. The other is one where T is constructed by removing some restricted assemblies from an orthogonal array of index unity. In the class of 2m-FF designs of resolution V considered here, optimal designs with respect to the trace criterion, i.e. A-optimal, are presented for m = 4, 5, and 6 and for a range of practical values of N (the total number of assemblies). Some of them are better than the corresponding A-optimal designs in the class of balanced fractional 2m factorial designs of resolution V obtained by Srivastava and Chopra (1971b) in such a sense that the trace of the covariance matrix of the estimates is small.  相似文献   

4.
An explicit expression for the characteristic polynomial of the information matrix MT of a balanced fractional 3m factorial (3m-BFF) design T of resolution V is obtained by utilizing the algebraic structure of the underlying multidimentional relationship. Also by using of the multidimensional relationship algebra, the trace and the determinant of the covariance matrix of the estimates of effects are derived.  相似文献   

5.
For 2m1+m2 factorial designs, this paper investigates balanced fractional 2m1 factorial designs of resolution 2l+1 with some nuisance parameters concerning the second factors. They are derivable from partially balanced arrays and further permit estimation of the effects up to the l-factor interactions concerning the first factors orthogonally to the nuisance parameters.  相似文献   

6.
By use of the algebraic structure of the triangular multidimensional partially balanced association scheme, we present the analysis of variance and the hypotheses testing of a balanced fractional 2nfactorial design of resolution 2l+1, which is derived from a balanced array of strength 2l.  相似文献   

7.
This paper gives necessary and sufficient conditions on σ, s, t and on μ, s, t for an array with s+t rows to have strength s and weight σ, or to be balanced and have strength s and weight μ. If a balanced array can exist, the conditions provide a construction. The solutions for t=1,2 are also given in an alternate form useful for the study of trim arrays. The balanced solution for t=1 is more detailed than that known so far, and permits one to determine whether or not a solution exists in possibly fewer steps.  相似文献   

8.
By use of the algebraic structure, we obtain an explicit expression for the characteristic polynomial of the information matrix of a partially balanced fractional 2m1+m2 factorial design of resolution V derived from a partially balanced array. For 4≤m1+m2≤6, A-optimal designs considered here are also presented for reasonable number of assemblies.  相似文献   

9.
We consider a fractional 3 m factorial design derived from a simple array (SA), which is a balanced array of full strength, where the non negligible factorial effects are the general mean and the linear and quadratic components of the main effect, and m ≥ 2. In this article, we give a necessary and sufficient condition for an SA to be a balanced fractional 3 m factorial design of resolution III. Such a design is characterized by the suffixes of indices of an SA.  相似文献   

10.
Theorems 5, 6 and 10, and Tables 1–2 in Ghosh (1981) are corrected. These are concerned with search designs which permit the estimation of the general mean and main effects, and allow the search and estimation of one possibly unknown nonzero effect among the two- and three-factor interactions in 2m factorial experiments. Some new results are presented.  相似文献   

11.
We consider a fractional 2m factorial design derived from a simple array (SA) such that the (? + 1)-factor and higher-order interactions are negligible, where 2? ? m. The purpose of this article is to give a necessary and sufficient condition for an SA to be a balanced fractional 2m factorial design of resolution 2? + 1. Such a design is concretely characterized by the suffixes of the indices of an SA.  相似文献   

12.
Let EG(m, 2) denote the m-dimensional finite Euclidean space (or geometry) based on GF(2), the finite field with elements 0 and 1. Let T be a set of points in this space, then T is said to form a q-covering (where q is an integer satisfying 1?q?m) of EG(m, 2) if and only if T has a nonempty intersection with every (m-q)-flat of EG(m, 2). This problem first arose in the statistical context of factorial search designs where it is known to have very important and wide ranging applications. Evidently, it is also useful to study this from the purely combinatorial point of view. In this paper, certain fundamental studies have been made for the case when q=2. Let N denote the size of the set T. Given N, we study the maximal value of m.  相似文献   

13.
This paper provides an algebraic (and hence computing) procedure for generation of balanced arrays having two symbols, m rows, specified minimum and maximum column weights, arbitrary strength tm, and index set parameters μt1, μt2,…, μtt. μt0 is unspecified, and calculated as part of the algorithm, although the procedure for specifying it is straightforward and can be used if desired. Array generation is herein reduced to finding integral solutions to a linear programming problem. It is shown that the integral solutions of the system of equations comprise all balanced arrays with the given set of parameters.A computing algorithm is provided which constructs the system of equations to be solved; it has been interfaced with a standard linear programming package to provide some preliminary results.Additional algorithms whose development should result in substantial decreases in computing costs are discussed.  相似文献   

14.
In this paper, we discuss resolution III plans for 2m factorial experiments which have an additional property. We relax the classical assumption that all the interactions are negligible by assuming that (at most) one of them may be nonnegligible. Which interaction is nonnegligible is unknown. We discuss designs which allow the search and estimation of this interaction, along with the estimation of the general mean and the main effects as in the classical resolution III designs.  相似文献   

15.
We consider a fractional 3m factorial design derived from a simple array (SA) such that the non negligible factorial effects are the general mean, the linear and the quadratic components of the main effect, and the linear-by-linear and the linear-by-quadratic components of the two-factor interaction. If these effects are estimable, then a design is said to be of resolution R({00, 10, 01, 20, 11}). In this paper, we give a necessary and sufficient condition for an SA to be a balanced fractional 3m factorial design of resolution R({00, 10, 01, 20, 11}). Such a design is concretely characterized by the suffixes of the indices of an SA.  相似文献   

16.
Saha and Mohanty (1970) presented a main effect fold-over design consisting of 14 treatment combinations of the 24×33 factorial, which had the nice property of being even balanced. Calling this design DSM, this paper establishes the following specific results: (i) DSM is not d-optimal in the subclass Δe of all 14 point even balanced main effect fold-over designs of the 24×33 factorial; (ii) DSM is not d-optimal in the subclass Δ1e of all 14 point even and odd balanced main effect fold-over designs of the 24×33 factorial; (iii) DSM is even optimal in Δ1 and Δe. In addition to these results two 14 point designs in Δ1 are presented which are d-optimal and via a counter example it is shown that these designs are not odd optimal. Finally, several general matrix algebra results are given which should be useful in resolving d-optimality problems of fold-over designs of the kn11×kn22 factorial.  相似文献   

17.
In this paper, we present Srivastava-Chopra optimal balanced resolution V plans for 2m factorials (4?m?8) which are robust in the sense that, when any observation is missing, each of these designs will remain as a resolution V plan.  相似文献   

18.
An explicit expression for the characteristic polynomial of the information matrix for a balanced fractional sm factorial design of resolution Vp, q (in particular, when p = q = s − 1, of resolution V) is obtained by utilizing the decomposition of a multidimensional relationship algebra into its four two-sided ideals. Furthermore, by use of the algebraic structure of the underlying multidimensional relationship, the trace and the determinant of the covariance matrix of the estimates of effects to be interest are derived.  相似文献   

19.
We consider a balanced fractional 2m factorial design of resolution 2?+1 which permits estimation of all factorial effects up through ?-factor interactions under the situation in which all (?+1)-factor and higher order interactions are to be negligible for an integer satisfying [m/2]<lE;?m, where [x] denotes the greatest integer not exceeding x. This paper investigates algebraic structure of the information matrix of such a design derived from a simple array through that of an atomic array. We obtain an explicit expression for the irreducible matrix representation based on the above design and its algebraic properties. The results in this paper will be useful to characterize the designs under consideration.  相似文献   

20.
Symmetric designs, for exploring the effect of competition between two varieties or plant species planted on a triangular lattice of hill plots, are discussed and the class of m-fold symmetric Beehive designs, based on certain symmetry properties of a regular hexagon, is introduced. The designs considered by Martin (1973) and Veevers and Boffey (1975) belong to the family arising when m = 6. Optimal designs for m = 2 and 3 are presented and, although not balanced, improvements in the sense of being nearer to balanced are achieved.Taking an alternative approach, a simple technique for constructing balanced, essentially rectangular, designs of arbitrary size is developed, based upon a set of twelve symmetric elementary arrays which possess a remarkable self-building property. The experimenter is at liberty to choose a balanced design to suit restrictions on space and material or to meet his desired degree of replication whilst the actual planting technique requires only that complete rows of each variety be suitably juxtaposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号