首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A set S of vertices of a graph G=(V,E) without isolated vertex is a total dominating set if every vertex of V(G) is adjacent to some vertex in S. The total domination number γ t (G) is the minimum cardinality of a total dominating set of G. The total domination subdivision number sdgt(G)\mathrm {sd}_{\gamma_{t}}(G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the total domination number. In this paper we prove that sdgt(G) £ gt(G)+1\mathrm {sd}_{\gamma_{t}}(G)\leq\gamma_{t}(G)+1 for some classes of graphs.  相似文献   

2.
A set S of vertices in a graph G=(V,E) is a total restrained dominating set (TRDS) of G if every vertex of G is adjacent to a vertex in S and every vertex of VS is adjacent to a vertex in VS. The total restrained domination number of G, denoted by γ tr (G), is the minimum cardinality of a TRDS of G. In this paper we characterize the claw-free graphs G of order n with γ tr (G)=n. Also, we show that γ tr (G)≤nΔ+1 if G is a connected claw-free graph of order n≥4 with maximum degree Δn−2 and minimum degree at least 2 and characterize those graphs which achieve this bound.  相似文献   

3.
Let G=(V,E) be a graph. A set of vertices S?V is a total restrained dominating set if every vertex is adjacent to a vertex in S and every vertex of $V-\nobreak S$ is adjacent to a vertex in V?S. The total restrained domination number of G, denoted by γ tr (G), is the smallest cardinality of a total restrained dominating set of G. A support vertex of a graph is a vertex of degree at least two which is adjacent to a leaf. We show that $\gamma_{\mathit{tr}}(T)\leq\lfloor\frac{n+2s+\ell-1}{2}\rfloor$ where T is a tree of order n≥3, and s and ? are, respectively, the number of support vertices and leaves of T. We also constructively characterize the trees attaining the aforementioned bound.  相似文献   

4.
A vertex in G is said to dominate itself and its neighbors. A subset S of vertices is a dominating set if S dominates every vertex of G. A paired-dominating set is a dominating set whose induced subgraph contains a perfect matching. The paired-domination number of a graph G, denoted by γ pr(G), is the minimum cardinality of a paired-dominating set in G. A subset S?V(G) is a double dominating set of G if S dominates every vertex of G at least twice. The minimum cardinality of a double dominating set of G is the double domination number γ ×2(G). A claw-free graph is a graph that does not contain K 1,3 as an induced subgraph. Chellali and Haynes (Util. Math. 67:161–171, 2005) showed that for every claw-free graph G, we have γ pr(G)≤γ ×2(G). In this paper we extend this result by showing that for r≥2, if G is a connected graph that does not contain K 1,r as an induced subgraph, then $\gamma_{\mathrm{pr}}(G)\le ( \frac{2r^{2}-6r+6}{r(r-1)} )\gamma_{\times2}(G)$ .  相似文献   

5.
On domination number of Cartesian product of directed paths   总被引:2,自引:2,他引:0  
Let γ(G) denote the domination number of a digraph G and let P m P n denote the Cartesian product of P m and P n , the directed paths of length m and n. In this paper, we give a lower and upper bound for γ(P m P n ). Furthermore, we obtain a necessary and sufficient condition for P m P n to have efficient dominating set, and determine the exact values: γ(P 2P n )=n, g(P3\square Pn)=n+é\fracn4ù\gamma(P_{3}\square P_{n})=n+\lceil\frac{n}{4}\rceil, g(P4\square Pn)=n+é\frac2n3ù\gamma(P_{4}\square P_{n})=n+\lceil\frac{2n}{3}\rceil, γ(P 5P n )=2n+1 and g(P6\square Pn)=2n+é\fracn+23ù\gamma(P_{6}\square P_{n})=2n+\lceil\frac{n+2}{3}\rceil.  相似文献   

6.
A set S of vertices of a graph G is a total outer-connected dominating set if every vertex in V(G) is adjacent to some vertex in S and the subgraph induced by V?S is connected. The total outer-connected domination number γ toc (G) is the minimum size of such a set. We give some properties and bounds for γ toc in general graphs and in trees. For graphs of order n, diameter 2 and minimum degree at least 3, we show that $\gamma_{toc}(G)\le \frac{2n-2}{3}$ and we determine the extremal graphs.  相似文献   

7.
In a graph G, a vertex dominates itself and its neighbors. A subset SeqV(G) is an m-tuple dominating set if S dominates every vertex of G at least m times, and an m-dominating set if S dominates every vertex of GS at least m times. The minimum cardinality of a dominating set is γ, of an m-dominating set is γ m , and of an m-tuple dominating set is mtupledom. For a property π of subsets of V(G), with associated parameter f_π, the k-restricted π-number r k (G,f_π) is the smallest integer r such that given any subset K of (at most) k vertices of G, there exists a π set containing K of (at most) cardinality r. We show that for 1< k < n where n is the order of G: (a) if G has minimum degree m, then r k (G m ) < (mn+k)/(m+1); (b) if G has minimum degree 3, then r k (G,γ) < (3n+5k)/8; and (c) if G is connected with minimum degree at least 2, then r k (G,ddom) < 3n/4 + 2k/7. These bounds are sharp. Research supported in part by the South African National Research Foundation and the University of KwaZulu-Natal.  相似文献   

8.
A set S of vertices of a graph G=(V,E) without isolated vertex is a total dominating set if every vertex of V(G) is adjacent to some vertex in S. The total domination number γ t (G) is the minimum cardinality of a total dominating set of G. The total domination subdivision number $\mathrm{sd}_{\gamma_{t}}(G)$ is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the total domination number. Favaron, Karami, Khoeilar and Sheikholeslami (J. Comb. Optim. 20:76–84, 2010a) conjectured that: For any connected graph G of order n≥3, $\mathrm{sd}_{\gamma_{t}}(G)\le \gamma_{t}(G)+1$ . In this paper we use matching to prove this conjecture for graphs with no 3-cycle and 5-cycle. In particular this proves the conjecture for bipartite graphs.  相似文献   

9.
A k-coloring of a graph G=(V,E) is a mapping c:V??{1,2,??,k}. The coloring c is injective if, for every vertex v??V, all the neighbors of v are assigned with distinct colors. The injective chromatic number ?? i (G) of G is the smallest k such that G has an injective k-coloring. In this paper, we prove that every K 4-minor free graph G with maximum degree ????1 has $\chi_{i}(G)\le \lceil \frac{3}{2}\Delta\rceil$ . Moreover, some related results and open problems are given.  相似文献   

10.
This paper studies the group testing problem in graphs as follows. Given a graph G=(V,E), determine the minimum number t(G) such that t(G) tests are sufficient to identify an unknown edge e with each test specifies a subset XV and answers whether the unknown edge e is in G[X] or not. Damaschke proved that ⌈log 2 e(G)⌉≤t(G)≤⌈log 2 e(G)⌉+1 for any graph G, where e(G) is the number of edges of G. While there are infinitely many complete graphs that attain the upper bound, it was conjectured by Chang and Hwang that the lower bound is attained by all bipartite graphs. Later, they proved that the conjecture is true for complete bipartite graphs. Chang and Juan verified the conjecture for bipartite graphs G with e(G)≤24 or for k≥5. This paper proves the conjecture for bipartite graphs G with e(G)≤25 or for k≥6. Dedicated to Professor Frank K. Hwang on the occasion of his 65th birthday. J.S.-t.J. is supported in part by the National Science Council under grant NSC89-2218-E-260-013. G.J.C. is supported in part by the National Science Council under grant NSC93-2213-E002-28. Taida Institute for Mathematical Sciences, National Taiwan University, Taipei 10617, Taiwan. National Center for Theoretical Sciences, Taipei Office.  相似文献   

11.
Let G=(V,E) be a graph without an isolated vertex. A set DV(G) is a k -distance paired dominating set of G if D is a k-distance dominating set of G and the induced subgraph 〈D〉 has a perfect matching. The minimum cardinality of a k-distance paired dominating set for graph G is the k -distance paired domination number, denoted by γ p k (G). In this paper, we determine the exact k-distance paired domination number of generalized Petersen graphs P(n,1) and P(n,2) for all k≥1.  相似文献   

12.
A paired-dominating set of a graph G is a dominating set of vertices whose induced subgraph has a perfect matching, while the paired-domination number is the minimum cardinality of a paired-dominating set in the graph, denoted by \(\gamma _{pr}(G)\). Let G be a connected \(\{K_{1,3}, K_{4}-e\}\)-free cubic graph of order n. We show that \(\gamma _{pr}(G)\le \frac{10n+6}{27}\) if G is \(C_{4}\)-free and that \(\gamma _{pr}(G)\le \frac{n}{3}+\frac{n+6}{9(\lceil \frac{3}{4}(g_o+1)\rceil +1)}\) if G is \(\{C_{4}, C_{6}, C_{10}, \ldots , C_{2g_o}\}\)-free for an odd integer \(g_o\ge 3\); the extremal graphs are characterized; we also show that if G is a 2 -connected, \(\gamma _{pr}(G) = \frac{n}{3} \). Furthermore, if G is a connected \((2k+1)\)-regular \(\{K_{1,3}, K_4-e\}\)-free graph of order n, then \(\gamma _{pr}(G)\le \frac{n}{k+1} \), with equality if and only if \(G=L(F)\), where \(F\cong K_{1, 2k+2}\), or k is even and \(F\cong K_{k+1,k+2}\).  相似文献   

13.
For a positive integer k, a total {k}-dominating function of a graph G is a function f from the vertex set V(G) to the set {0,1,2,…,k} such that for any vertex vV(G), the condition ∑ uN(v) f(u)≥k is fulfilled, where N(v) is the open neighborhood of v. A set {f 1,f 2,…,f d } of total {k}-dominating functions on G with the property that ?i=1dfi(v) £ k\sum_{i=1}^{d}f_{i}(v)\le k for each vV(G), is called a total {k}-dominating family (of functions) on G. The maximum number of functions in a total {k}-dominating family on G is the total {k}-domatic number of G, denoted by dt{k}(G)d_{t}^{\{k\}}(G). Note that dt{1}(G)d_{t}^{\{1\}}(G) is the classic total domatic number d t (G). In this paper we initiate the study of the total {k}-domatic number in graphs and we present some bounds for dt{k}(G)d_{t}^{\{k\}}(G). Many of the known bounds of d t (G) are immediate consequences of our results.  相似文献   

14.
A set S of vertices in a graph G is a paired-dominating set of G if every vertex of G is adjacent to some vertex in S and if the subgraph induced by S contains a perfect matching. The maximum cardinality of a minimal paired-dominating set of G is the upper paired-domination number of G, denoted by Γpr(G). We establish bounds on Γpr(G) for connected claw-free graphs G in terms of the number n of vertices in G with given minimum degree δ. We show that Γpr(G)≤4n/5 if δ=1 and n≥3, Γpr(G)≤3n/4 if δ=2 and n≥6, and Γpr(G)≤2n/3 if δ≥3. All these bounds are sharp. Further, if n≥6 the graphs G achieving the bound Γpr(G)=4n/5 are characterized, while for n≥9 the graphs G with δ=2 achieving the bound Γpr(G)=3n/4 are characterized.  相似文献   

15.
In the connected facility location (ConFL) problem, we are given a graph G=(V,E) with nonnegative edge cost c e on the edges, a set of facilities ??V, a set of demands (i.e., clients) $\mathcal{D}\subseteq VIn the connected facility location (ConFL) problem, we are given a graph G=(V,E) with nonnegative edge cost c e on the edges, a set of facilities ℱ⊆V, a set of demands (i.e., clients) D í V\mathcal{D}\subseteq V , and a parameter M≥1. Each facility i has a nonnegative opening cost f i and each client j has d j units of demand. Our objective is to open some facilities, say F⊆ℱ, assign each demand j to some open facility i(j)∈F and connect all open facilities using a Steiner tree T such that the total cost, which is ?i ? Ffi+?j ? Ddjci(j)j+M?e ? Tce\sum_{i\in F}f_{i}+\sum_{j\in \mathcal{D}}d_{j}c_{i(j)j}+M\sum_{e\in T}c_{e} , is minimized. We present a primal-dual 6.55-approximation algorithm for the ConFL problem which improves the previous primal-dual 8.55-approximation algorithm given by Swamy and Kumar (Algorithmica 40:245–269, 2004).  相似文献   

16.
In this paper we continue the study of Roman dominating functions in graphs. A signed Roman dominating function (SRDF) on a graph G=(V,E) is a function f:V→{?1,1,2} satisfying the conditions that (i) the sum of its function values over any closed neighborhood is at least one and (ii) for every vertex u for which f(u)=?1 is adjacent to at least one vertex v for which f(v)=2. The weight of a SRDF is the sum of its function values over all vertices. The signed Roman domination number of G is the minimum weight of a SRDF in G. We present various lower and upper bounds on the signed Roman domination number of a graph. Let G be a graph of order n and size m with no isolated vertex. We show that $\gamma _{\mathrm{sR}}(G) \ge\frac{3}{\sqrt{2}} \sqrt{n} - n$ and that γ sR(G)≥(3n?4m)/2. In both cases, we characterize the graphs achieving equality in these bounds. If G is a bipartite graph of order n, then we show that $\gamma_{\mathrm{sR}}(G) \ge3\sqrt{n+1} - n - 3$ , and we characterize the extremal graphs.  相似文献   

17.
A set S of vertices of a graph G is an outer-connected dominating set if every vertex not in S is adjacent to some vertex in S and the subgraph induced by V?S is connected. The outer-connected domination number $\widetilde{\gamma}_{c}(G)$ is the minimum size of such a set. We prove that if δ(G)≥2 and diam?(G)≤2, then $\widetilde{\gamma}_{c}(G)\le (n+1)/2$ , and we study the behavior of $\widetilde{\gamma}_{c}(G)$ under an edge addition.  相似文献   

18.
Let γ t {k}(G) denote the total {k}-domination number of graph G, and let denote the Cartesian product of graphs G and H. In this paper, we show that for any graphs G and H without isolated vertices, . As a corollary of this result, we have for all graphs G and H without isolated vertices, which is given by Pak Tung Ho (Util. Math., 2008, to appear) and first appeared as a conjecture proposed by Henning and Rall (Graph. Comb. 21:63–69, 2005). The work was supported by NNSF of China (No. 10701068 and No. 10671191).  相似文献   

19.
Let G be a connected graph with n≥2 vertices. Suppose that a fire breaks out at a vertex v of G. A firefighter starts to protect vertices. At each time interval, the firefighter protects one vertex not yet on fire. At the end of each time interval, the fire spreads to all the unprotected vertices that have a neighbor on fire. Let sn(v) denote the maximum number of vertices in G that the firefighter can save when a fire breaks out at vertex v. The surviving rate ρ(G) of G is defined to be ∑ vV(G)sn(v)/n 2, which is the average proportion of saved vertices. In this paper, we show that if G is a planar graph with n≥2 vertices and having girth at least 7, then $\rho(G)>\frac{1}{301}$ .  相似文献   

20.
In this paper, we continue the study of paired-domination in graphs introduced by Haynes and Slater (Networks 32 (1998) 199–206). A set S of vertices in a graph G is a paired-dominating set of G if every vertex of G is adjacent to some vertex in S and if the subgraph induced by S contains a perfect matching. The paired-domination number of G, denoted by , is the minimum cardinality of a paired-dominating set of G. If G does not contain a graph F as an induced subgraph, then G is said to be F-free. Haynes and Slater (Networks 32 (1998) 199–206) showed that if G is a connected graph of order , then and this bound is sharp for graphs of arbitrarily large order. Every graph is -free for some integer a ≥ 0. We show that for every integer a ≥ 0, if G is a connected -free graph of order n ≥ 2, then with infinitely many extremal graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号