首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modeling clustered categorical data based on extensions of generalized linear model theory has received much attention in recent years. The rapidly increasing number of approaches suitable for categorical data in which clusters are uncorrelated, but correlations exist within a cluster, has caused uncertainty among applied scientists as to their respective merits and demerits. Upon centering estimation around solving an unbiased estimating function for mean parameters and estimation of covariance parameters describing within-cluster or among-cluster heterogeneity, many approaches can easily be related. This contribution describes a series of algorithms and their implementation in detail, based on a classification of inferential procedures for clustered data.  相似文献   

2.
In this article, we propose a resampling method based on perturbing the estimating functions to compute the asymptotic variances of quantile regression estimators under missing at random condition. We prove that the conditional distributions of the resampling estimators are asymptotically equivalent to the distributions of quantile regression estimators. Our method can deal with complex situations, where the response and part of covariates are missing. Numerical results based on simulated and real data are provided under several designs.  相似文献   

3.
In this paper, we introduce the empirical likelihood (EL) method to longitudinal studies. By considering the dependence within subjects in the auxiliary random vectors, we propose a new weighted empirical likelihood (WEL) inference for generalized linear models with longitudinal data. We show that the weighted empirical likelihood ratio always follows an asymptotically standard chi-squared distribution no matter which working weight matrix that we have chosen, but a well chosen working weight matrix can improve the efficiency of statistical inference. Simulations are conducted to demonstrate the accuracy and efficiency of our proposed WEL method, and a real data set is used to illustrate the proposed method.  相似文献   

4.
Agreement studies commonly occur in medical research, for example, in the review of X-rays by radiologists, blood tests by a panel of pathologists and the evaluation of psychopathology by a panel of raters. In these studies, often two observers rate the same subject for some characteristic with a discrete number of levels. The κ-coefficient is a popular measure of agreement between the two raters. The κ-coefficient may depend on covariates, i.e. characteristics of the raters and/or the subjects being rated. Our research was motivated by two agreement problems. The first is a study of agreement between a pastor and a co-ordinator of Christian education on whether they feel that the congregation puts enough emphasis on encouraging members to work for social justice (yes versus no). We wish to model the κ-coefficient as a function of covariates such as political orientation (liberal versus conservative) of the pastor and co-ordinator. The second example is a spousal education study, in which we wish to model the κ-coefficient as a function of covariates such as the highest degree of the father of the wife and the father of the husband. We propose a simple method to estimate the regression model for the κ-coefficient, which consists of two logistic (or multinomial logistic) regressions and one linear regression for binary data. The estimates can be easily obtained in any generalized linear model software program.  相似文献   

5.
In this paper, we investigate empirical likelihood (EL) inferences via weighted composite quantile regression for non linear models. Under regularity conditions, we establish that the proposed empirical log-likelihood ratio is asymptotically chi-squared, and then the confidence intervals for the regression coefficients are constructed. The proposed method avoids estimating the unknown error density function involved in the asymptotic covariance matrix of the estimators. Simulations suggest that the proposed EL procedure is more efficient and robust, and a real data analysis is used to illustrate the performance.  相似文献   

6.
By approximating the nonparametric component using a regression spline in generalized partial linear models (GPLM), robust generalized estimating equations (GEE), involving bounded score function and leverage-based weighting function, can be used to estimate the regression parameters in GPLM robustly for longitudinal data or clustered data. In this paper, score test statistics are proposed for testing the regression parameters with robustness, and their asymptotic distributions under the null hypothesis and a class of local alternative hypotheses are studied. The proposed score tests reply on the estimation of a smaller model without the testing parameters involved, and perform well in the simulation studies and real data analysis conducted in this paper.  相似文献   

7.
We propose a unified approach to the estimation of regression parameters under double-sampling designs, in which a primary sample consisting of data on the rough or proxy measures for the response and/or explanatory variables as well as a validation subsample consisting of data on the exact measurements are available. We assume that the validation sample is a simple random subsample from the primary sample. Our proposal utilizes a specific parametric model to extract the partial information contained in the primary sample. The resulting estimator is consistent even if such a model is misspecified, and it achieves higher asymptotic efficiency than the estimator based only on the validation data. Specific cases are discussed to illustrate the application of the estimator proposed.  相似文献   

8.
In this paper, we consider a partially linear transformation model for data subject to length-biasedness and right-censoring which frequently arise simultaneously in biometrics and other fields. The partially linear transformation model can account for nonlinear covariate effects in addition to linear effects on survival time, and thus reconciles a major disadvantage of the popular semiparamnetric linear transformation model. We adopt local linear fitting technique and develop an unbiased global and local estimating equations approach for the estimation of unknown covariate effects. We provide an asymptotic justification for the proposed procedure, and develop an iterative computational algorithm for its practical implementation, and a bootstrap resampling procedure for estimating the standard errors of the estimator. A simulation study shows that the proposed method performs well in finite samples, and the proposed estimator is applied to analyse the Oscar data.  相似文献   

9.
This paper considers the concepts of leverage and influence in the linear regression model with correlated errors when the error covariance structure is completely specified. Generalizations of the usual measures are given. Extensions of residuals also naturally arise. The theory is illustrated using two examples  相似文献   

10.
In longitudinal studies, robust sandwich variance estimators are often used, and are especially useful when model assumptions are in doubt. However, the usual sandwich estimator does not allow for models with crossed random effects. The hierarchical likelihood extends the idea of the sandwich estimator to models not currently covered. By simulation studies, we show that the new sandwich estimator is robust against heteroscedastic errors and against misspecification of overdispersion in the y | v component.  相似文献   

11.
A general class of multivariate regression models is considered for repeated measurements with discrete and continuous outcome variables. The proposed model is based on the seemingly unrelated regression model (Zellner, 1962) and an extension of the model of Park and Woolson(1992). The regression parameters of the model are consistently estimated using the two-stage least squares method. When the out come variables are multivariate normal, the two-stage estimator reduces to Zellner’s two-stage estimator. As a special case, we consider the marginal distribution described by Liang and Zeger (1986). Under this this distributional assumption, we show that the two-stage estimator has similar asymptotic properties and comparable small sample properties to Liang and Zeger's estimator. Since the proposed approach is based on the least squares method, however, any distributional assumption is not required for variables outcome variables. As a result, the proposed estimator is more robust to the marginal distribution of outcomes.  相似文献   

12.
This paper presents a comprehensive comparison of well-known partially adaptive estimators (PAEs) in terms of efficiency in estimating regression parameters. The aim is to identify the best estimators of regression parameters when error terms follow from normal, Laplace, Student's t, normal mixture, lognormal and gamma distribution via the Monte Carlo simulation. In the results of the simulation, efficient PAEs are determined in the case of symmetric leptokurtic and skewed leptokurtic regression error data. Additionally, these estimators are also compared in terms of regression applications. Regarding these applications, using certain standard error estimators, it is shown that PAEs can reduce the standard error of the slope parameter estimate relative to ordinary least squares.  相似文献   

13.
A noise estimation method for corrupted correlated data   总被引:1,自引:0,他引:1  
Data acquisition, both in time and in spatial domains, in many cases yields observations with a measurement error. The identification of such a component, that masks the phenomenon under study (signal), must be carried out before the model of interest is specified. The objective of the paper is to propose an estimator for the parameters of an additive noise and compare it with existing methods by applications to both simulated and real data sets.  相似文献   

14.
Ruiqin Tian 《Statistics》2017,51(5):988-1005
In this paper, empirical likelihood inference for longitudinal data within the framework of partial linear regression models are investigated. The proposed procedures take into consideration the correlation within groups without involving direct estimation of nuisance parameters in the correlation matrix. The empirical likelihood method is used to estimate the regression coefficients and the baseline function, and to construct confidence intervals. A nonparametric version of Wilk's theorem for the limiting distribution of the empirical likelihood ratio is derived. Compared with methods based on normal approximations, the empirical likelihood does not require consistent estimators for the asymptotic variance and bias. The finite sample behaviour of the proposed method is evaluated with simulation and illustrated with an AIDS clinical trial data set.  相似文献   

15.
It has been a long history for testing whether the underlying distribution belongs to a particular family. In this paper, we propose some jackknife empirical likelihood tests via estimating equations. The proposed new tests allow one to add more relevant constraints so as to improve the powers. A simulation study shows the effectiveness of the new tests.  相似文献   

16.
Given the regression model Yi = m(xi) +εi (xi ε C, i = l,…,n, C a compact set in R) where m is unknown and the random errors {εi} present an ARMA structure, we design a bootstrap method for testing the hypothesis that the regression function follows a general linear model: Ho : m ε {mθ(.) = At(.)θ : θ ε ? ? Rq} with A a functional from R to Rq. The criterion of the test derives from a Cramer-von-Mises type functional distance D = d2([mcirc]n, At(.)θn), between [mcirc]n, a Gasser-Miiller non-parametric estimator of m, and the member of the class defined in Ho that is closest to mn in terms of this distance. The consistency of the bootstrap distribution of D and θn is obtained under general conditions. Finally, simulations show the good behavior of the bootstrap approximation with respect to the asymptotic distribution of D = d2.  相似文献   

17.
Jackknife estimators of the variance of estimators which are functions of the sample mean are considered. A quadratic approximation of them is proposed and compared with a linear approximation by Monte Carlo experiments carried out by statistical software Minitab.  相似文献   

18.
The Lorenz curve describes the wealth proportion for an income-ordered population. In this paper, we introduce a kernel smoothing estimator for the Lorenz curve and propose a smoothed jackknife empirical likelihood method for constructing confidence intervals of Lorenz ordinates. Extensive simulation studies are conducted to evaluate finite sample performances of the proposed methods. A real dataset of Georgia professor’s income is used to illustrate the proposed methods.  相似文献   

19.
S. Huet 《Statistics》2015,49(2):239-266
We propose a procedure to test that the expectation of a Gaussian vector is linear against a nonparametric alternative. We consider the case where the covariance matrix of the observations has a block diagonal structure. This framework encompasses regression models with autocorrelated errors, heteroscedastic regression models, mixed-effects models and growth curves. Our procedure does not depend on any prior information about the alternative. We prove that the test is asymptotically of the nominal level and consistent. We characterize the set of vectors on which the test is powerful and prove the classical √log log (n)/n convergence rate over directional alternatives. We propose a bootstrap version of the test as an alternative to the initial one and provide a simulation study in order to evaluate both procedures for small sample sizes when the purpose is to test goodness of fit in a Gaussian mixed-effects model. Finally, we illustrate the procedures using a real data set.  相似文献   

20.
This paper gives necessary and sufficient conditions for a mixed regression estimator to be superior to another mixed estimator. The comparisons are based on the mean square error matrices of the estimators. Both estimators are allowed to be biased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号