首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 7 毫秒
1.
In this paper we explore statistical properties of some difference-based approaches to estimate an error variance for small sample based on nonparametric regression which satisfies Lipschitz condition. Our study is motivated by Tong and Wang (2005), who estimated error variance using a least squares approach. They considered the error variance as the intercept in a simple linear regression which was obtained from the expectation of their lag-k Rice estimator. Their variance estimators are highly dependent on the setting of a regressor and weight of their simple linear regression. Although this regressor and weight can be varied based on the characteristic of an unknown nonparametric mean function, Tong and Wang (2005) have used a fixed regressor and weight in a large sample and gave no indication of how to determine the regressor and the weight. In this paper, we propose a new approach via local quadratic approximation to determine this regressor and weight. Using our proposed regressor and weight, we estimate the error variance as the intercept of simple linear regression using both ordinary least squares and weighted least squares. Our approach applies to both small and large samples, while most existing difference-based methods are appropriate solely for large samples. We compare the performance of our approach with other existing approaches using extensive simulation study. The advantage of our approach is demonstrated using a real data set.  相似文献   

2.
In this article, a new class of variance function estimators is proposed in the setting of heteroscedastic nonparametric regression models. To obtain a variance function estimator, the main proposal is to smooth the product of the response variable and residuals as opposed to the squared residuals. The asymptotic properties of the proposed methodology are investigated in order to compare its asymptotic behavior with that of the existing methods. The finite sample performance of the proposed estimator is studied through simulation studies. The effect of the curvature of the mean function on its finite sample behavior is also discussed.  相似文献   

3.
Conditional variance estimation in heteroscedastic regression models   总被引:1,自引:0,他引:1  
First, we propose a new method for estimating the conditional variance in heteroscedasticity regression models. For heavy tailed innovations, this method is in general more efficient than either of the local linear and local likelihood estimators. Secondly, we apply a variance reduction technique to improve the inference for the conditional variance. The proposed methods are investigated through their asymptotic distributions and numerical performances.  相似文献   

4.
ABSTRACT

This article considers the monitoring for variance change in nonparametric regression models. First, the local linear estimator of the regression function is given. A moving square cumulative sum procedure is proposed based on residuals of the estimator. And the asymptotic results of the statistic under the null hypothesis and the alternative hypothesis are obtained. Simulations and Application support our procedure.  相似文献   

5.
6.
Bias-corrected confidence bands for general nonparametric regression models are considered. We use local polynomial fitting to construct the confidence bands and combine the cross-validation method and the plug-in method to select the bandwidths. Related asymptotic results are obtained. Our simulations show that confidence bands constructed by local polynomial fitting have much better coverage than those constructed by using the Nadaraya–Watson estimator. The results are also applicable to nonparametric autoregressive time series models.  相似文献   

7.
We consider nonparametric estimation of a regression curve when the data are observed with Berkson errors or with a mixture of classical and Berkson errors. In this context, other existing nonparametric procedures can either estimate the regression curve consistently on a very small interval or require complicated inversion of an estimator of the Fourier transform of a nonparametric regression estimator. We introduce a new estimation procedure which is simpler to implement, and study its asymptotic properties. We derive convergence rates which are faster than those previously obtained in the literature, and we prove that these rates are optimal. We suggest a data-driven bandwidth selector and apply our method to some simulated examples.  相似文献   

8.
Local linear regression involves fitting a straight line segment over a small region whose midpoint is the target point x, and the local linear estimate at x   is the estimated intercept of that straight line segment, with an asymptotic bias of order h2h2 and variance of order (nh)-1(nh)-1 (h is the bandwidth). In this paper, we propose a new estimator, the double-smoothing local linear estimator, which is constructed by integrally combining all fitted values at x   of local lines in its neighborhood with another round of smoothing. The proposed estimator attempts to make use of all information obtained from fitting local lines. Without changing the order of variance, the new estimator can reduce the bias to an order of h4h4. The proposed estimator has better performance than local linear regression in situations with considerable bias effects; it also has less variability and more easily overcomes the sparse data problem than local cubic regression. At boundary points, the proposed estimator is comparable to local linear regression. Simulation studies are conducted and an ethanol example is used to compare the new approach with other competitive methods.  相似文献   

9.
Abstract

In this article, nonparametric estimators of the regression function, and its derivatives, obtained by means of weighted local polynomial fitting are studied. Consider the fixed regression model where the error random variables are coming from a stationary stochastic process satisfying a mixing condition. Uniform strong consistency, along with rates, are established for these estimators. Furthermore, when the errors follow an AR(1) correlation structure, strong consistency properties are also derived for a modified version of the local polynomial estimators proposed by Vilar-Fernández and Francisco-Fernández (Vilar-Fernández, J. M., Francisco-Fernández, M. (2002 Vilar-Fernández, J. M. and Francisco-Fernández, M. 2002. Local polynomial regression smoothers with AR-error structure. TEST, 11(2): 439464.  [Google Scholar]). Local polynomial regression smoothers with AR-error structure. TEST 11(2):439–464).  相似文献   

10.
Dose-finding in clinical studies is typically formulated as a quantile estimation problem, for which a correct specification of the variance function of the outcomes is important. This is especially true for sequential study where the variance assumption directly involves in the generation of the design points and hence sensitivity analysis may not be performed after the data are collected. In this light, there is a strong reason for avoiding parametric assumptions on the variance function, although this may incur efficiency loss. In this paper, we investigate how much information one may retrieve by making additional parametric assumptions on the variance in the context of a sequential least squares recursion. By asymptotic comparison, we demonstrate that assuming homoscedasticity achieves only a modest efficiency gain when compared to nonparametric variance estimation: when homoscedasticity in truth holds, the latter is at worst 88% as efficient as the former in the limiting case, and often achieves well over 90% efficiency for most practical situations. Extensive simulation studies concur with this observation under a wide range of scenarios.  相似文献   

11.
The variance of the error term in ordinary regression models and linear smoothers is usually estimated by adjusting the average squared residual for the trace of the smoothing matrix (the degrees of freedom of the predicted response). However, other types of variance estimators are needed when using monotonic regression (MR) models, which are particularly suitable for estimating response functions with pronounced thresholds. Here, we propose a simple bootstrap estimator to compensate for the over-fitting that occurs when MR models are estimated from empirical data. Furthermore, we show that, in the case of one or two predictors, the performance of this estimator can be enhanced by introducing adjustment factors that take into account the slope of the response function and characteristics of the distribution of the explanatory variables. Extensive simulations show that our estimators perform satisfactorily for a great variety of monotonic functions and error distributions.  相似文献   

12.
We derive the optimal regression function (i.e., the best approximation in the L2 sense) when the vector of covariates has a random dimension. Furthermore, we consider applications of these results to problems in statistical regression and classification with missing covariates. It will be seen, perhaps surprisingly, that the correct regression function for the case with missing covariates can sometimes perform better than the usual regression function corresponding to the case with no missing covariates. This is because even if some of the covariates are missing, an indicator random variable δδ, which is always observable, and is equal to 1 if there are no missing values (and 0 otherwise), may have far more information and predictive power about the response variable Y than the missing covariates do. We also propose kernel-based procedures for estimating the correct regression function nonparametrically. As an alternative estimation procedure, we also consider the least-squares method.  相似文献   

13.
We consider semiparametric additive regression models with a linear parametric part and a nonparametric part, both involving multivariate covariates. For the nonparametric part we assume two models. In the first, the regression function is unspecified and smooth; in the second, the regression function is additive with smooth components. Depending on the model, the regression curve is estimated by suitable least squares methods. The resulting residual-based empirical distribution function is shown to differ from the error-based empirical distribution function by an additive expression, up to a uniformly negligible remainder term. This result implies a functional central limit theorem for the residual-based empirical distribution function. It is used to test for normal errors.  相似文献   

14.
It is already shown in Arnold and Stahlecker (2009) that, in linear regression, a uniformly best estimator exists in the class of all Γ-compatibleΓ-compatible linear affine estimators. Here, prior information is given by a fuzzy set ΓΓ defined by its ellipsoidal α-cutsα-cuts. Surprisingly, such a uniformly best linear affine estimator is uniformly best not only in the class of all Γ-compatibleΓ-compatible linear affine estimators but also in the class of all estimators satisfying a very weak and sensible condition. This property of a uniformly best linear affine estimator is shown in the present paper. Furthermore, two illustrative special cases are mentioned, where a generalized least squares estimator on the one hand and a general ridge or Kuks–Olman estimator on the other hand turn out to be uniformly best.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号