首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, van der Linde (Comput. Stat. Data Anal. 53:517–533, 2008) proposed a variational algorithm to obtain approximate Bayesian inference in functional principal components analysis (FPCA), where the functions were observed with Gaussian noise. Generalized FPCA under different noise models with sparse longitudinal data was developed by Hall et al. (J. R. Stat. Soc. B 70:703–723, 2008), but no Bayesian approach is available yet. It is demonstrated that an adapted version of the variational algorithm can be applied to obtain a Bayesian FPCA for canonical parameter functions, particularly log-intensity functions given Poisson count data or logit-probability functions given binary observations. To this end a second order Taylor expansion of the log-likelihood, that is, a working Gaussian distribution and hence another step of approximation, is used. Although the approach is conceptually straightforward, difficulties can arise in practical applications depending on the accuracy of the approximation and the information in the data. A modified algorithm is introduced generally for one-parameter exponential families and exemplified for binary and count data. Conditions for its successful application are discussed and illustrated using simulated data sets. Also an application with real data is presented.  相似文献   

2.
We consider a Bayesian analysis method of paired survival data using a bivariate exponential model proposed by Moran (1967, Biometrika 54:385–394). Important features of Moran’s model include that the marginal distributions are exponential and the range of the correlation coefficient is between 0 and 1. These contrast with the popular exponential model with gamma frailty. Despite these nice properties, statistical analysis with Moran’s model has been hampered by lack of a closed form likelihood function. In this paper, we introduce a latent variable to circumvent the difficulty in the Bayesian computation. We also consider a model checking procedure using the predictive Bayesian P-value.  相似文献   

3.
4.
This paper deals with the analysis of multivariate survival data from a Bayesian perspective using Markov-chain Monte Carlo methods. The Metropolis along with the Gibbs algorithm is used to calculate some of the marginal posterior distributions. A multivariate survival model is proposed, since survival times within the same group are correlated as a consequence of a frailty random block effect. The conditional proportional-hazards model of Clayton and Cuzick is used with a martingale structured prior process (Arjas and Gasbarra) for the discretized baseline hazard. Besides the calculation of the marginal posterior distributions of the parameters of interest, this paper presents some Bayesian EDA diagnostic techniques to detect model adequacy. The methodology is exemplified with kidney infection data where the times to infections within the same patients are expected to be correlated.  相似文献   

5.
Quantitative model validation is playing an increasingly important role in performance and reliability assessment of a complex system whenever computer modelling and simulation are involved. The foci of this paper are to pursue a Bayesian probabilistic approach to quantitative model validation with non-normality data, considering data uncertainty and to investigate the impact of normality assumption on validation accuracy. The Box–Cox transformation method is employed to convert the non-normality data, with the purpose of facilitating the overall validation assessment of computational models with higher accuracy. Explicit expressions for the interval hypothesis testing-based Bayes factor are derived for the transformed data in the context of univariate and multivariate cases. Bayesian confidence measure is presented based on the Bayes factor metric. A generalized procedure is proposed to implement the proposed probabilistic methodology for model validation of complicated systems. Classic hypothesis testing method is employed to conduct a comparison study. The impact of data normality assumption and decision threshold variation on model assessment accuracy is investigated by using both classical and Bayesian approaches. The proposed methodology and procedure are demonstrated with a univariate stochastic damage accumulation model, a multivariate heat conduction problem and a multivariate dynamic system.  相似文献   

6.
This paper proposes a new statistical spatial model to analyze and predict the coverage percentage of the upland ground flora in the Missouri Ozark Forest Ecosystem Project (MOFEP). The flora coverage percentages are collected from clustered locations, which requires a new spatial model other than the traditional kriging method. The proposed model handles this special data structure by treating the flora coverage percentages collected from the clustered locations as repeated measurements in a Bayesian hierarchical setting. The correlation among the observations from the clustered locations are considered as well. The total vegetation coverage data in MOFEP is analyzed in this study. An Markov chain Monte Carlo algorithm based on the shrinkage slice sampler is developed for simulation from the posterior densities. The total vegetation coverage is modeled by three components, including the covariates, random spatial effect and correlated random errors. Prediction of the total vegetation coverage at unmeasured locations is developed.  相似文献   

7.
We develop a Bayesian analysis for the class of Birnbaum–Saunders nonlinear regression models introduced by Lemonte and Cordeiro (Comput Stat Data Anal 53:4441–4452, 2009). This regression model, which is based on the Birnbaum–Saunders distribution (Birnbaum and Saunders in J Appl Probab 6:319–327, 1969a), has been used successfully to model fatigue failure times. We have considered a Bayesian analysis under a normal-gamma prior. Due to the complexity of the model, Markov chain Monte Carlo methods are used to develop a Bayesian procedure for the considered model. We describe tools for model determination, which include the conditional predictive ordinate, the logarithm of the pseudo-marginal likelihood and the pseudo-Bayes factor. Additionally, case deletion influence diagnostics is developed for the joint posterior distribution based on the Kullback–Leibler divergence. Two empirical applications are considered in order to illustrate the developed procedures.  相似文献   

8.
Quantile regression, including median regression, as a more completed statistical model than mean regression, is now well known with its wide spread applications. Bayesian inference on quantile regression or Bayesian quantile regression has attracted much interest recently. Most of the existing researches in Bayesian quantile regression focus on parametric quantile regression, though there are discussions on different ways of modeling the model error by a parametric distribution named asymmetric Laplace distribution or by a nonparametric alternative named scale mixture asymmetric Laplace distribution. This paper discusses Bayesian inference for nonparametric quantile regression. This general approach fits quantile regression curves using piecewise polynomial functions with an unknown number of knots at unknown locations, all treated as parameters to be inferred through reversible jump Markov chain Monte Carlo (RJMCMC) of Green (Biometrika 82:711–732, 1995). Instead of drawing samples from the posterior, we use regression quantiles to create Markov chains for the estimation of the quantile curves. We also use approximate Bayesian factor in the inference. This method extends the work in automatic Bayesian mean curve fitting to quantile regression. Numerical results show that this Bayesian quantile smoothing technique is competitive with quantile regression/smoothing splines of He and Ng (Comput. Stat. 14:315–337, 1999) and P-splines (penalized splines) of Eilers and de Menezes (Bioinformatics 21(7):1146–1153, 2005).  相似文献   

9.
The Cox proportional frailty model with a random effect has been proposed for the analysis of right-censored data which consist of a large number of small clusters of correlated failure time observations. For right-censored data, Cai et al. [3] proposed a class of semiparametric mixed-effects models which provides useful alternatives to the Cox model. We demonstrate that the approach of Cai et al. [3] can be used to analyze clustered doubly censored data when both left- and right-censoring variables are always observed. The asymptotic properties of the proposed estimator are derived. A simulation study is conducted to investigate the performance of the proposed estimator.  相似文献   

10.
This article proposes a Bayesian approach, which can simultaneously obtain the Bayesian estimates of unknown parameters and random effects, to analyze nonlinear reproductive dispersion mixed models (NRDMMs) for longitudinal data with nonignorable missing covariates and responses. The logistic regression model is employed to model the missing data mechanisms for missing covariates and responses. A hybrid sampling procedure combining the Gibber sampler and the Metropolis-Hastings algorithm is presented to draw observations from the conditional distributions. Because missing data mechanism is not testable, we develop the logarithm of the pseudo-marginal likelihood, deviance information criterion, the Bayes factor, and the pseudo-Bayes factor to compare several competing missing data mechanism models in the current considered NRDMMs with nonignorable missing covaraites and responses. Three simulation studies and a real example taken from the paediatric AIDS clinical trial group ACTG are used to illustrate the proposed methodologies. Empirical results show that our proposed methods are effective in selecting missing data mechanism models.  相似文献   

11.
ABSTRACT

A general Bayesian random effects model for analyzing longitudinal mixed correlated continuous and negative binomial responses with and without missing data is presented. This Bayesian model, given some random effects, uses a normal distribution for the continuous response and a negative binomial distribution for the count response. A Markov Chain Monte Carlo sampling algorithm is described for estimating the posterior distribution of the parameters. This Bayesian model is illustrated by a simulation study. For sensitivity analysis to investigate the change of parameter estimates with respect to the perturbation from missing at random to not missing at random assumption, the use of posterior curvature is proposed. The model is applied to a medical data, obtained from an observational study on women, where the correlated responses are the negative binomial response of joint damage and continuous response of body mass index. The simultaneous effects of some covariates on both responses are also investigated.  相似文献   

12.
An extension of the generalized linear mixed model was constructed to simultaneously accommodate overdispersion and hierarchies present in longitudinal or clustered data. This so‐called combined model includes conjugate random effects at observation level for overdispersion and normal random effects at subject level to handle correlation, respectively. A variety of data types can be handled in this way, using different members of the exponential family. Both maximum likelihood and Bayesian estimation for covariate effects and variance components were proposed. The focus of this paper is the development of an estimation procedure for the two sets of random effects. These are necessary when making predictions for future responses or their associated probabilities. Such (empirical) Bayes estimates will also be helpful in model diagnosis, both when checking the fit of the model as well as when investigating outlying observations. The proposed procedure is applied to three datasets of different outcome types. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Survival data obtained from prevalent cohort study designs are often subject to length-biased sampling. Frequentist methods including estimating equation approaches, as well as full likelihood methods, are available for assessing covariate effects on survival from such data. Bayesian methods allow a perspective of probability interpretation for the parameters of interest, and may easily provide the predictive distribution for future observations while incorporating weak prior knowledge on the baseline hazard function. There is lack of Bayesian methods for analyzing length-biased data. In this paper, we propose Bayesian methods for analyzing length-biased data under a proportional hazards model. The prior distribution for the cumulative hazard function is specified semiparametrically using I-Splines. Bayesian conditional and full likelihood approaches are developed for analyzing simulated and real data.  相似文献   

14.
Semiparametric reproductive dispersion mixed model (SPRDMM) is a natural extension of the reproductive dispersion model and the semiparametric mixed model. In this paper, we relax the normality assumption of random effects in SPRDMM and use a truncated and centred Dirichlet process prior to specify random effects, and present the Bayesian P-spline to approximate the smoothing unknown function. A hybrid algorithm combining the block Gibbs sampler and the Metropolis–Hastings algorithm is implemented to sample observations from the posterior distribution. Also, we develop Bayesian case deletion influence measure for SPRDMM based on the φ-divergence and present those computationally feasible formulas. Several simulation studies and a real example are presented to illustrate the proposed methodologies.  相似文献   

15.
In the analysis of correlated ordered data, mixed-effect models are frequently used to control the subject heterogeneity effects. A common assumption in fitting these models is the normality of random effects. In many cases, this is unrealistic, making the estimation results unreliable. This paper considers several flexible models for random effects and investigates their properties in the model fitting. We adopt a proportional odds logistic regression model and incorporate the skewed version of the normal, Student's t and slash distributions for the effects. Stochastic representations for various flexible distributions are proposed afterwards based on the mixing strategy approach. This reduces the computational burden being performed by the McMC technique. Furthermore, this paper addresses the identifiability restrictions and suggests a procedure to handle this issue. We analyze a real data set taken from an ophthalmic clinical trial. Model selection is performed by suitable Bayesian model selection criteria.  相似文献   

16.
Count data have emerged in many applied research areas. In recent years, there has been a considerable interest in models for count data. In modelling such data, it is common to face a large frequency of zeroes. The data are regarded as zero-inflated when the frequency of observed zeroes is larger than what is expected from a theoretical distribution such as Poisson distribution, as a standard model for analysing count data. Data analysis, using the simple Poisson model, may lead to over-dispersion. Several classes of different mixture models were proposed for handling zero-inflated data. But they do not apply to cases when inflated counts happen at some other points, in addition to zero. In these cases, a doubly-inflated Poisson model has been suggested which only be used for cross-sectional data and cannot consider correlations between observations. However, correlated count data have a large application, especially in the health and medical fields. The present study aims to introduce a Doubly-Inflated Poisson models with random effect for correlated doubly-inflated data. Then, the best performance of the proposed method is shown via different simulation scenarios. Finally, the proposed model is applied to a dental study.KEYWORDS: Count data, doubly-inflated, Poisson regression, zero-inflated, correlated data  相似文献   

17.
Family-based follow-up study designs are important in epidemiology as they enable investigations of disease aggregation within families. Such studies are subject to methodological complications since data may include multiple endpoints as well as intra-family correlation. The methods herein are developed for the analysis of age of onset with multiple disease types for family-based follow-up studies. The proposed model expresses the marginalized frailty model in terms of the subdistribution hazards (SDH). As with Pipper and Martinussen’s (Scand J Stat 30:509–521, 2003) model, the proposed multivariate SDH model yields marginal interpretations of the regression coefficients while allowing the correlation structure to be specified by a frailty term. Further, the proposed model allows for a direct investigation of the covariate effects on the cumulative incidence function since the SDH is modeled rather than the cause specific hazard. A simulation study suggests that the proposed model generally offers improved performance in terms of bias and efficiency when a sufficient number of events is observed. The proposed model also offers type I error rates close to nominal. The method is applied to a family-based study of breast cancer when death in absence of breast cancer is considered a competing risk.  相似文献   

18.
This paper considers the problem of analysis of covariance (ANCOVA) under the assumption of inverse Gaussian distribution for response variable from the Bayesian point of view. We develop a fully Bayesian model for ANCOVA based on the conjugate prior distributions for parameters contained in the model. The Bayes estimator of parameters, ANCOVA model and adjusted effects for both treatments and covariates along with predictive distribution of future observations are developed. We also provide the essentials for comparing adjusted treatments effects and adjusted factor effects. A simulation study and a real world application are also performed to illustrate and evaluate the proposed Bayesian model.  相似文献   

19.
In recent years, the spatial lattice data has been a motivating issue for researches. Modeling of binary variables observed at locations on a spatial lattice has been sufficiently investigated and the autologistic model is a popular tool for analyzing these data. But, there are many situations where binary responses are clustered in several uncorrelated lattices, and only a few studies were found to investigate the modeling of binary data distributed in such spatial structure. Besides, due to spatial dependency in data exact likelihood analyses is not possible. Bayesian inference, for the autologistic function due to intractability of its normalizing-constant, often has limitations and difficulties. In this study, spatially correlated binary data clustered in uncorrelated lattices are modeled via autologistic regression and IBF (inverse Bayes formulas) sampler with help of introducing latent variables, is extended for posterior analysis and parameter estimation. The proposed methodology is illustrated using simulated and real observations.  相似文献   

20.
This paper discusses inference regarding the mean direction and the concentration parameters based on data from the von Mises distribution from a Bayesian point of view, when k(k < n/2) of the n observations are spurious, that is, are from a von Mises population with a shifted mean direction. The Bayesian analysis for this spuriosity case provides both detection, identification, and estimation for the mean direction and the concentration parameter when indeed spurious observations are present, possibly giving rise to outliers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号