首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Dose‐escalation trials commonly assume a homogeneous trial population to identify a single recommended dose of the experimental treatment for use in future trials. Wrongly assuming a homogeneous population can lead to a diluted treatment effect. Equally, exclusion of a subgroup that could in fact benefit from the treatment can cause a beneficial treatment effect to be missed. Accounting for a potential subgroup effect (ie, difference in reaction to the treatment between subgroups) in dose‐escalation can increase the chance of finding the treatment to be efficacious in a larger patient population. A standard Bayesian model‐based method of dose‐escalation is extended to account for a subgroup effect by including covariates for subgroup membership in the dose‐toxicity model. A stratified design performs well but uses available data inefficiently and makes no inferences concerning presence of a subgroup effect. A hypothesis test could potentially rectify this problem but the small sample sizes result in a low‐powered test. As an alternative, the use of spike and slab priors for variable selection is proposed. This method continually assesses the presence of a subgroup effect, enabling efficient use of the available trial data throughout escalation and in identifying the recommended dose(s). A simulation study, based on real trial data, was conducted and this design was found to be both promising and feasible.  相似文献   

2.
Subgroup by treatment interaction assessments are routinely performed when analysing clinical trials and are particularly important for phase 3 trials where the results may affect regulatory labelling. Interpretation of such interactions is particularly difficult, as on one hand the subgroup finding can be due to chance, but equally such analyses are known to have a low chance of detecting differential treatment effects across subgroup levels, so may overlook important differences in therapeutic efficacy. EMA have therefore issued draft guidance on the use of subgroup analyses in this setting. Although this guidance provided clear proposals on the importance of pre‐specification of likely subgroup effects and how to use this when interpreting trial results, it is less clear which analysis methods would be reasonable, and how to interpret apparent subgroup effects in terms of whether further evaluation or action is necessary. A PSI/EFSPI Working Group has therefore been investigating a focused set of analysis approaches to assess treatment effect heterogeneity across subgroups in confirmatory clinical trials that take account of the number of subgroups explored and also investigating the ability of each method to detect such subgroup heterogeneity. This evaluation has shown that the plotting of standardised effects, bias‐adjusted bootstrapping method and SIDES method all perform more favourably than traditional approaches such as investigating all subgroup‐by‐treatment interactions individually or applying a global test of interaction. Therefore, these approaches should be considered to aid interpretation and provide context for observed results from subgroup analyses conducted for phase 3 clinical trials.  相似文献   

3.
This paper studies the notion of coherence in interval‐based dose‐finding methods. An incoherent decision is either (a) a recommendation to escalate the dose following an observed dose‐limiting toxicity or (b) a recommendation to deescalate the dose following a non–dose‐limiting toxicity. In a simulated example, we illustrate that the Bayesian optimal interval method and the Keyboard method are not coherent. We generated dose‐limiting toxicity outcomes under an assumed set of true probabilities for a trial of n=36 patients in cohorts of size 1, and we counted the number of incoherent dosing decisions that were made throughout this simulated trial. Each of the methods studied resulted in 13/36 (36%) incoherent decisions in the simulated trial. Additionally, for two different target dose‐limiting toxicity rates, 20% and 30%, and a sample size of n=30 patients, we randomly generated 100 dose‐toxicity curves and tabulated the number of incoherent decisions made by each method in 1000 simulated trials under each curve. For each method studied, the probability of incurring at least one incoherent decision during the conduct of a single trial is greater than 75%. Coherency is an important principle in the conduct of dose‐finding trials. Interval‐based methods violate this principle for cohorts of size 1 and require additional modifications to overcome this shortcoming. Researchers need to take a closer look at the dose assignment behavior of interval‐based methods when using them to plan dose‐finding studies.  相似文献   

4.
Treatment during cancer clinical trials sometimes involves the combination of multiple drugs. In addition, in recent years there has been a trend toward phase I/II trials in which a phase I and a phase II trial are combined into a single trial to accelerate drug development. Methods for the seamless combination of phases I and II parts are currently under investigation. In the phase II part, adaptive randomization on the basis of patient efficacy outcomes allocates more patients to the dose combinations considered to have higher efficacy. Patient toxicity outcomes are used for determining admissibility to each dose combination and are not used for selection of the dose combination itself. In cases where the objective is not to find the optimum dose combination solely for efficacy but regarding both toxicity and efficacy, the need exists to allocate patients to dose combinations with consideration of the balance of existing trade‐offs between toxicity and efficacy. We propose a Bayesian hierarchical model and an adaptive randomization with consideration for the relationship with toxicity and efficacy. Using the toxicity and efficacy outcomes of patients, the Bayesian hierarchical model is used to estimate the toxicity probability and efficacy probability in each of the dose combinations. Here, we use Bayesian moving‐reference adaptive randomization on the basis of desirability computed from the obtained estimator. Computer simulations suggest that the proposed method will likely recommend a higher percentage of target dose combinations than a previously proposed method.  相似文献   

5.
Sequential administration of immunotherapy following radiotherapy (immunoRT) has attracted much attention in cancer research. Due to its unique feature that radiotherapy upregulates the expression of a predictive biomarker for immunotherapy, novel clinical trial designs are needed for immunoRT to identify patient subgroups and the optimal dose for each subgroup. In this article, we propose a Bayesian phase I/II design for immunotherapy administered after standard-dose radiotherapy for this purpose. We construct a latent subgroup membership variable and model it as a function of the baseline and pre-post radiotherapy change in the predictive biomarker measurements. Conditional on the latent subgroup membership of each patient, we jointly model the continuous immune response and the binary efficacy outcome using plateau models, and model toxicity using the equivalent toxicity score approach to account for toxicity grades. During the trial, based on accumulating data, we continuously update model estimates and adaptively randomize patients to admissible doses. Simulation studies and an illustrative trial application show that our design has good operating characteristics in terms of identifying both patient subgroups and the optimal dose for each subgroup.  相似文献   

6.
One of the primary purposes of an oncology dose‐finding trial is to identify an optimal dose (OD) that is both tolerable and has an indication of therapeutic benefit for subjects in subsequent clinical trials. In addition, it is quite important to accelerate early stage trials to shorten the entire period of drug development. However, it is often challenging to make adaptive decisions of dose escalation and de‐escalation in a timely manner because of the fast accrual rate, the difference of outcome evaluation periods for efficacy and toxicity and the late‐onset outcomes. To solve these issues, we propose the time‐to‐event Bayesian optimal interval design to accelerate dose‐finding based on cumulative and pending data of both efficacy and toxicity. The new design, named “TITE‐BOIN‐ET” design, is nonparametric and a model‐assisted design. Thus, it is robust, much simpler, and easier to implement in actual oncology dose‐finding trials compared with the model‐based approaches. These characteristics are quite useful from a practical point of view. A simulation study shows that the TITE‐BOIN‐ET design has advantages compared with the model‐based approaches in both the percentage of correct OD selection and the average number of patients allocated to the ODs across a variety of realistic settings. In addition, the TITE‐BOIN‐ET design significantly shortens the trial duration compared with the designs without sequential enrollment and therefore has the potential to accelerate early stage dose‐finding trials.  相似文献   

7.
Basket trials evaluate a single drug targeting a single genetic variant in multiple cancer cohorts. Empirical findings suggest that treatment efficacy across baskets may be heterogeneous. Most modern basket trial designs use Bayesian methods. These methods require the prior specification of at least one parameter that permits information sharing across baskets. In this study, we provide recommendations for selecting a prior for scale parameters for adaptive basket trials by using Bayesian hierarchical modeling. Heterogeneity among baskets attracts much attention in basket trial research, and substantial heterogeneity challenges the basic assumption of exchangeability of Bayesian hierarchical approach. Thus, we also allowed each stratum-specific parameter to be exchangeable or nonexchangeable with similar strata by using data observed in an interim analysis. Through a simulation study, we evaluated the overall performance of our design based on statistical power and type I error rates. Our research contributes to the understanding of the properties of Bayesian basket trial designs.  相似文献   

8.
Understanding the dose–response relationship is a key objective in Phase II clinical development. Yet, designing a dose‐ranging trial is a challenging task, as it requires identifying the therapeutic window and the shape of the dose–response curve for a new drug on the basis of a limited number of doses. Adaptive designs have been proposed as a solution to improve both quality and efficiency of Phase II trials as they give the possibility to select the dose to be tested as the trial goes. In this article, we present a ‘shapebased’ two‐stage adaptive trial design where the doses to be tested in the second stage are determined based on the correlation observed between efficacy of the doses tested in the first stage and a set of pre‐specified candidate dose–response profiles. At the end of the trial, the data are analyzed using the generalized MCP‐Mod approach in order to account for model uncertainty. A simulation study shows that this approach gives more precise estimates of a desired target dose (e.g. ED70) than a single‐stage (fixed‐dose) design and performs as well as a two‐stage D‐optimal design. We present the results of an adaptive model‐based dose‐ranging trial in multiple sclerosis that motivated this research and was conducted using the presented methodology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
With advancement of technologies such as genomic sequencing, predictive biomarkers have become a useful tool for the development of personalized medicine. Predictive biomarkers can be used to select subsets of patients, which are most likely to benefit from a treatment. A number of approaches for subgroup identification were proposed over the last years. Although overviews of subgroup identification methods are available, systematic comparisons of their performance in simulation studies are rare. Interaction trees (IT), model‐based recursive partitioning, subgroup identification based on differential effect, simultaneous threshold interaction modeling algorithm (STIMA), and adaptive refinement by directed peeling were proposed for subgroup identification. We compared these methods in a simulation study using a structured approach. In order to identify a target population for subsequent trials, a selection of the identified subgroups is needed. Therefore, we propose a subgroup criterion leading to a target subgroup consisting of the identified subgroups with an estimated treatment difference no less than a pre‐specified threshold. In our simulation study, we evaluated these methods by considering measures for binary classification, like sensitivity and specificity. In settings with large effects or huge sample sizes, most methods perform well. For more realistic settings in drug development involving data from a single trial only, however, none of the methods seems suitable for selecting a target population. Using the subgroup criterion as alternative to the proposed pruning procedures, STIMA and IT can improve their performance in some settings. The methods and the subgroup criterion are illustrated by an application in amyotrophic lateral sclerosis.  相似文献   

10.
We consider subgroup analyses within the framework of hierarchical modeling and empirical Bayes (EB) methodology for general priors, thereby generalizing the normal–normal model. By doing this one obtains greater flexibility in modeling. We focus on mixture priors, that is, on the situation where group effects are exchangeable within clusters of subgroups only. We establish theoretical results on accuracy, precision, shrinkage and selection bias of EB estimators under the general priors. The impact of model misspecification is investigated and the applicability of the methodology is illustrated with datasets from the (medical) literature.  相似文献   

11.
Subgroup detection has received increasing attention recently in different fields such as clinical trials, public management and market segmentation analysis. In these fields, people often face time‐to‐event data, which are commonly subject to right censoring. This paper proposes a semiparametric Logistic‐Cox mixture model for subgroup analysis when the interested outcome is event time with right censoring. The proposed method mainly consists of a likelihood ratio‐based testing procedure for testing the existence of subgroups. The expectation–maximization iteration is applied to improve the testing power, and a model‐based bootstrap approach is developed to implement the testing procedure. When there exist subgroups, one can also use the proposed model to estimate the subgroup effect and construct predictive scores for the subgroup membership. The large sample properties of the proposed method are studied. The finite sample performance of the proposed method is assessed by simulation studies. A real data example is also provided for illustration.  相似文献   

12.
Various statistical models have been proposed for two‐dimensional dose finding in drug‐combination trials. However, it is often a dilemma to decide which model to use when conducting a particular drug‐combination trial. We make a comprehensive comparison of four dose‐finding methods, and for fairness, we apply the same dose‐finding algorithm under the four model structures. Through extensive simulation studies, we compare the operating characteristics of these methods in various practical scenarios. The results show that different models may lead to different design properties and that no single model performs uniformly better in all scenarios. As a result, we propose using Bayesian model averaging to overcome the arbitrariness of the model specification and enhance the robustness of the design. We assign a discrete probability mass to each model as the prior model probability and then estimate the toxicity probabilities of combined doses in the Bayesian model averaging framework. During the trial, we adaptively allocated each new cohort of patients to the most appropriate dose combination by comparing the posterior estimates of the toxicity probabilities with the prespecified toxicity target. The simulation results demonstrate that the Bayesian model averaging approach is robust under various scenarios. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Drug-combination studies have become increasingly popular in oncology. One of the critical concerns in phase I drug-combination trials is the uncertainty in toxicity evaluation. Most of the existing phase I designs aim to identify the maximum tolerated dose (MTD) by reducing the two-dimensional searching space to one dimension via a prespecified model or splitting the two-dimensional space into multiple one-dimensional subspaces based on the partially known toxicity order. Nevertheless, both strategies often lead to complicated trials which may either be sensitive to model assumptions or induce longer trial durations due to subtrial split. We develop two versions of dynamic ordering design (DOD) for dose finding in drug-combination trials, where the dose-finding problem is cast in the Bayesian model selection framework. The toxicity order of dose combinations is continuously updated via a two-dimensional pool-adjacent-violators algorithm, and then the dose assignment for each incoming cohort is selected based on the optimal model under the dynamic toxicity order. We conduct extensive simulation studies to evaluate the performance of DOD in comparison with four other commonly used designs under various scenarios. Simulation results show that the two versions of DOD possess competitive performances in terms of correct MTD selection as well as safety, and we apply both versions of DOD to two real oncology trials for illustration.  相似文献   

14.
Traditionally, noninferiority hypotheses have been tested using a frequentist method with a fixed margin. Given that information for the control group is often available from previous studies, it is interesting to consider a Bayesian approach in which information is “borrowed” for the control group to improve efficiency. However, construction of an appropriate informative prior can be challenging. In this paper, we consider a hybrid Bayesian approach for testing noninferiority hypotheses in studies with a binary endpoint. To account for heterogeneity between the historical information and the current trial for the control group, a dynamic P value–based power prior parameter is proposed to adjust the amount of information borrowed from the historical data. This approach extends the simple test‐then‐pool method to allow a continuous discounting power parameter. An adjusted α level is also proposed to better control the type I error. Simulations are conducted to investigate the performance of the proposed method and to make comparisons with other methods including test‐then‐pool and hierarchical modeling. The methods are illustrated with data from vaccine clinical trials.  相似文献   

15.
In many clinical trials, biological, pharmacological, or clinical information is used to define candidate subgroups of patients that might have a differential treatment effect. Once the trial results are available, interest will focus on subgroups with an increased treatment effect. Estimating a treatment effect for these groups, together with an adequate uncertainty statement is challenging, owing to the resulting “random high” / selection bias. In this paper, we will investigate Bayesian model averaging to address this problem. The general motivation for the use of model averaging is to realize that subgroup selection can be viewed as model selection, so that methods to deal with model selection uncertainty, such as model averaging, can be used also in this setting. Simulations are used to evaluate the performance of the proposed approach. We illustrate it on an example early‐phase clinical trial.  相似文献   

16.
In studies of combinations of agents in phase I oncology trials, the dose–toxicity relationship may not be monotone for all combinations, in which case the toxicity probabilities follow a partial order. The continual reassessment method for partial orders (PO‐CRM) is a design for phase I trials of combinations that leans upon identifying possible complete orders associated with the partial order. This article addresses some practical design considerations not previously undertaken when describing the PO‐CRM. We describe an approach in choosing a proper subset of possible orderings, formulated according to the known toxicity relationships within a matrix of combination therapies. Other design issues, such as working model selection and stopping rules, are also discussed. We demonstrate the practical ability of PO‐CRM as a phase I design for combinations through its use in a recent trial designed at the University of Virginia Cancer Center. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Phase I clinical trials aim to identify a maximum tolerated dose (MTD), the highest possible dose that does not cause an unacceptable amount of toxicity in the patients. In trials of combination therapies, however, many different dose combinations may have a similar probability of causing a dose‐limiting toxicity, and hence, a number of MTDs may exist. Furthermore, escalation strategies in combination trials are more complex, with possible escalation/de‐escalation of either or both drugs. This paper investigates the properties of two existing proposed Bayesian adaptive models for combination therapy dose‐escalation when a number of different escalation strategies are applied. We assess operating characteristics through a series of simulation studies and show that strategies that only allow ‘non‐diagonal’ moves in the escalation process (that is, both drugs cannot increase simultaneously) are inefficient and identify fewer MTDs for Phase II comparisons. Such strategies tend to escalate a single agent first while keeping the other agent fixed, which can be a severe restriction when exploring dose surfaces using a limited sample size. Meanwhile, escalation designs based on Bayesian D‐optimality allow more varied experimentation around the dose space and, consequently, are better at identifying more MTDs. We argue that for Phase I combination trials it is sensible to take forward a number of identified MTDs for Phase II experimentation so that their efficacy can be directly compared. Researchers, therefore, need to carefully consider the escalation strategy and model that best allows the identification of these MTDs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
The goal of a phase I clinical trial in oncology is to find a dose with acceptable dose‐limiting toxicity rate. Often, when a cytostatic drug is investigated or when the maximum tolerated dose is defined using a toxicity score, the main endpoint in a phase I trial is continuous. We propose a new method to use in a dose‐finding trial with continuous endpoints. The new method selects the right dose on par with other methods and provides more flexibility in assigning patients to doses in the course of the trial when the rate of accrual is fast relative to the follow‐up time. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Incorporating historical data has a great potential to improve the efficiency of phase I clinical trials and to accelerate drug development. For model-based designs, such as the continuous reassessment method (CRM), this can be conveniently carried out by specifying a “skeleton,” that is, the prior estimate of dose limiting toxicity (DLT) probability at each dose. In contrast, little work has been done to incorporate historical data into model-assisted designs, such as the Bayesian optimal interval (BOIN), Keyboard, and modified toxicity probability interval (mTPI) designs. This has led to the misconception that model-assisted designs cannot incorporate prior information. In this paper, we propose a unified framework that allows for incorporating historical data into model-assisted designs. The proposed approach uses the well-established “skeleton” approach, combined with the concept of prior effective sample size, thus it is easy to understand and use. More importantly, our approach maintains the hallmark of model-assisted designs: simplicity—the dose escalation/de-escalation rule can be tabulated prior to the trial conduct. Extensive simulation studies show that the proposed method can effectively incorporate prior information to improve the operating characteristics of model-assisted designs, similarly to model-based designs.  相似文献   

20.
Model‐based dose‐finding methods for a combination therapy involving two agents in phase I oncology trials typically include four design aspects namely, size of the patient cohort, three‐parameter dose‐toxicity model, choice of start‐up rule, and whether or not to include a restriction on dose‐level skipping. The effect of each design aspect on the operating characteristics of the dose‐finding method has not been adequately studied. However, some studies compared the performance of rival dose‐finding methods using design aspects outlined by the original studies. In this study, we featured the well‐known four design aspects and evaluated the impact of each independent effect on the operating characteristics of the dose‐finding method including these aspects. We performed simulation studies to examine the effect of these design aspects on the determination of the true maximum tolerated dose combinations as well as exposure to unacceptable toxic dose combinations. The results demonstrated that the selection rates of maximum tolerated dose combinations and UTDCs vary depending on the patient cohort size and restrictions on dose‐level skipping However, the three‐parameter dose‐toxicity models and start‐up rules did not affect these parameters. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号