首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Many farmers in water‐scarce regions of developing countries use wastewater to irrigate vegetables and other agricultural crops, a practice that may expand with climate change. There are a number of health risks associated with wastewater irrigation for human food crops, particularly with surface irrigation techniques common in the developing world. The World Health Organization (WHO) recommends using quantitative microbial risk assessment (QMRA) to determine if the irrigation scheme meets health standards. However, only a few vegetables have been studied for wastewater risk and little information is known about the disease burden of wastewater‐irrigated vegetable consumption in China. To bridge this knowledge gap, an experiment was conducted to determine volume of water left on Asian vegetables and lettuce after irrigation. One hundred samples each of Chinese chard (Brassica rapa var. chinensis), Chinese broccoli (Brassica oleracea var. alboglabra), Chinese flowering cabbage (Brassica rapa var. parachinensis), and lettuce (Lactuca sativa) were harvested after overhead sprinkler irrigation. Chinese broccoli and flowering cabbage were found to capture the most water and lettuce the least. QMRAs were then constructed to estimate rotavirus disease burden from consumption of wastewater‐irrigated Asian vegetables in Beijing. Results indicate that estimated risks from these reuse scenarios exceed WHO guideline thresholds for acceptable disease burden for wastewater use, signifying that reduction of pathogen concentration or stricter risk management is necessary for safe reuse. Considering the widespread practice of wastewater irrigation for food production, particularly in developing countries, incorporation of water retention factors in QMRAs can reduce uncertainty regarding health risks for consumers worldwide.  相似文献   

2.
《Risk analysis》2016,36(2):191-202
We live in an age that increasingly calls for national or regional management of global risks. This article discusses the contributions that expert elicitation can bring to efforts to manage global risks and identifies challenges faced in conducting expert elicitation at this scale. In doing so it draws on lessons learned from conducting an expert elicitation as part of the World Health Organizations (WHO) initiative to estimate the global burden of foodborne disease; a study commissioned by the Foodborne Disease Epidemiology Reference Group (FERG). Expert elicitation is designed to fill gaps in data and research using structured, transparent methods. Such gaps are a significant challenge for global risk modeling. Experience with the WHO FERG expert elicitation shows that it is feasible to conduct an expert elicitation at a global scale, but that challenges do arise, including: defining an informative, yet feasible geographical structure for the elicitation; defining what constitutes expertise in a global setting; structuring international, multidisciplinary expert panels; and managing demands on experts’ time in the elicitation. This article was written as part of a workshop, “Methods for Research Synthesis: A Cross‐Disciplinary Approach” held at the Harvard Center for Risk Analysis on October 13, 2013.  相似文献   

3.
Quantitative microbial risk assessment was used to assess the risk of norovirus gastroenteritis associated with consumption of raw vegetables irrigated with highly treated municipal wastewater, using Melbourne, Australia as an example. In the absence of local norovirus concentrations, three methods were developed: (1) published concentrations of norovirus in raw sewage, (2) an epidemiological method using Melbourne prevalence of norovirus, and (3) an adjustment of method 1 to account for prevalence of norovirus. The methods produced highly variable results with estimates of norovirus concentrations in raw sewage ranging from 104 per milliliter to 107 per milliliter and treated effluent from 1 × 10?3 per milliliter to 3 per milliliter (95th percentiles). Annual disease burden was very low using method 1, from 4 to 5 log10 disability adjusted life years (DALYs) below the 10?6 threshold (0.005–0.1 illnesses per year). Results of method 2 were higher, with some scenarios exceeding the threshold by up to 2 log10 DALYs (up to 95,000 illnesses per year). Method 3, thought to be most representative of Melbourne conditions, predicted annual disease burdens >2 log10 DALYs lower than the threshold (~4 additional cases per year). Sensitivity analyses demonstrated that input parameters used to estimate norovirus concentration accounted for much of the model output variability. This model, while constrained by a lack of knowledge of sewage concentrations, used the best available information and sound logic. Results suggest that current wastewater reuse behaviors in Melbourne are unlikely to cause norovirus risks in excess of the annual DALY health target.  相似文献   

4.
In recent years, European countries have witnessed a number of food crises such as dioxin-contaminated chicken, foot-and-mouth disease, and BSE. In such cases, food might be contaminated by microorganisms or chemicals that could pose a risk to the consumer. These cases attract media attention and might instigate the consumer to reduce the consumption of the allegedly contaminated products. Although a decline in consumption of (potentially) contaminated products has been observed, it is not yet clear what determines the individual's reaction to food risk messages. To study the psychological determinants of the reaction to food risk messages, a survey was conducted in the Netherlands (n= 280). Subjects had to imagine two situations involving chicken contamination and report how they would react behaviorally if this situation occurred. Risk perception, affective response, perceived susceptibility to foodborne disease, self-efficacy, outcome expectation, trust, experience with foodborne disease, and need for information were also assessed. It was found that 60% of the subjects would allegedly avoid the risks by not consuming chicken for a while and approximately 60% would seek additional information. Risk avoidance was significantly related to information seeking and the psychological determinants, especially risk perception, affective response, need for information, perceived susceptibility to foodborne disease, and trust. Seeking information was also significantly related to risk perception, affective response, need for information, susceptibility to foodborne disease, and trust, but to a lesser degree. A model describing the relationships between the variables was tested using AMOS. Results are presented and implications are discussed.  相似文献   

5.
Some viruses cause tumor regression and can be used to treat cancer patients; these viruses are called oncolytic viruses. To assess whether oncolytic viruses from animal origin excreted by patients pose a health risk for livestock, a quantitative risk assessment (QRA) was performed to estimate the risk for the Dutch pig industry after environmental release of Seneca Valley virus (SVV). The QRA assumed SVV excretion in stool by one cancer patient on Day 1 in the Netherlands, discharge of SVV with treated wastewater into the river Meuse, downstream intake of river water for drinking water production, and consumption of this drinking water by pigs. Dose–response curves for SVV infection and clinical disease in pigs were constructed from experimental data. In the worst scenario (four log10 virus reduction by drinking water treatment and a farm with 10,000 pigs), the infection risk is less than 1% with 95% certainty. The risk of clinical disease is almost seven orders of magnitude lower. Risks may increase proportionally with the numbers of treated patients and days of virus excretion. These data indicate that application of wild‐type oncolytic animal viruses may infect susceptible livestock. A QRA regarding the use of oncolytic animal virus is, therefore, highly recommended. For this, data on excretion by patients, and dose–response parameters for infection and clinical disease in livestock, should be studied.  相似文献   

6.
Priority setting for food safety management at a national level requires risks to be ranked according to defined criteria. In this study, two approaches (disability‐adjusted life years (DALYs) and cost of illness (COI)) were used to generate estimates of the burden of disease for certain potentially foodborne diseases (campylobacteriosis, salmonellosis, listeriosis (invasive, perinatal, and nonperinatal), infection with Shiga toxin‐producing Escherichia coli (STEC), yersiniosis, and norovirus infection) and their sequelae in New Zealand. A modified Delphi approach was used to estimate the food‐attributable proportion for these diseases. The two approaches gave a similar ranking for the selected diseases, with campylobacteriosis and its sequelae accounting for the greatest proportion of the overall burden of disease by far.  相似文献   

7.
The conservation of freshwater is of both global and national importance, and in the United States, agriculture is one of the largest consumers of this resource. Reduction of the strain farming puts on local surface or groundwater is vital for ensuring resilience in the face of climate change, and one possible option is to irrigate with a combination of freshwater and reclaimed water from municipal wastewater treatment facilities. However, this wastewater can contain pathogens that are harmful to human health, such as Legionella pneumophila, which is a bacterium that can survive aerosolization and airborne transportation and cause severe pneumonia when inhaled. To assess an individual adult's risk of infection with L. pneumophila from a single exposure to agricultural spray irrigation, a quantitative microbial risk assessment was conducted for a scenario of spray irrigation in central Illinois, for the growing seasons in 2017, 2018, and 2019. The assessment found that the mean risk of infection for a single exposure exceeded the safety threshold of 10–6 infections/exposure up to 1 km from a low-pressure irrigator and up to 2 km from a high-pressure irrigator, although no median risk exceeded the threshold for any distance or irrigator pressure. These findings suggest that spray irrigation with treated municipal wastewater could be a viable option for reducing freshwater consumption in Midwest farming, as long as irrigation on windy days is avoided and close proximity to the active irrigator is limited.  相似文献   

8.
Food safety objectives (FSOs) are established in order to minimize the risk of foodborne illnesses to consumers, but these have not yet been incorporated into regulatory policy. An FSO states the maximum frequency and/or concentration of a microbiological hazard in a food at the time of consumption that provides an acceptable level of protection to the public and leads to a performance criterion for industry. However, in order to be implemented as a regulation, this criterion has to be achievable by the affected industry. In order to determine an FSO, the steps to produce and store that food need to be known, especially where they have an impact on contamination, growth, and destruction. This article uses existing models for growth of Listeria monocytogenes in conjunction with calculations of FSOs to approximate the outcome of more than one introduction of the foodborne organism throughout the food-processing path from the farm to the consumer. Most models for the growth and reduction of foodborne illnesses are logarithmic in nature, which fits the nature of the growth of microorganisms, spanning many orders of magnitude. However, these logarithmic models are normally limited to a single introduction step and a single reduction step. The model presented as part of this research addresses more than one introduction of food contamination, each of which can be separated by a substantial amount of time. The advantage of treating the problem this way is the accommodation of multiple introductions of foodborne pathogens over a range of time durations and conditions.  相似文献   

9.
Stakeholders making decisions in public health and world trade need improved estimations of the burden‐of‐illness of foodborne infectious diseases. In this article, we propose a Bayesian meta‐analysis or more precisely a Bayesian evidence synthesis to assess the burden‐of‐illness of campylobacteriosis in France. Using this case study, we investigate campylobacteriosis prevalence, as well as the probabilities of different events that guide the disease pathway, by (i) employing a Bayesian approach on French and foreign human studies (from active surveillance systems, laboratory surveys, physician surveys, epidemiological surveys, and so on) through the chain of events that occur during an episode of illness and (ii) including expert knowledge about this chain of events. We split the target population using an exhaustive and exclusive partition based on health status and the level of disease investigation. We assume an approximate multinomial model over this population partition. Thereby, each observed data set related to the partition brings information on the parameters of the multinomial model, improving burden‐of‐illness parameter estimates that can be deduced from the parameters of the basic multinomial model. This multinomial model serves as a core model to perform a Bayesian evidence synthesis. Expert knowledge is introduced by way of pseudo‐data. The result is a global estimation of the burden‐of‐illness parameters with their accompanying uncertainty.  相似文献   

10.
To address the persistent problems of foodborne and zoonotic disease, public health officials worldwide face difficult choices about how to best allocate limited resources and target interventions to reduce morbidity and mortality. Data‐driven approaches to informing these decisions have been developed in a number of countries. Integrated comparative frameworks generally share three methodological components: estimating incidence of acute illnesses, chronic sequelae, and mortality; attributing pathogen‐specific illnesses to foods; and calculating integrated measures of disease burden such as cost of illness, willingness to pay, and health‐adjusted life years (HALYs). To discuss the similarities and differences in these approaches, to seek consensus on principles, and to improve international collaboration, the E.U. MED‐VET‐NET and the U.S.‐based Food Safety Research Consortium organized an international conference convened in Berlin, Germany, on July 19–21, 2006. This article draws in part on the deliberations of the conference and discusses general principles, data needs, methodological issues and challenges, and future research needs pertinent to objective data‐driven analyses and their potential use for priority setting of foodborne and zoonotic pathogens in public health policy.  相似文献   

11.
Foot-and-mouth disease (FMD) is a viral disease of domesticated and wild cloven-hoofed animals. FMD virus is known to spread by direct contact between infected and susceptible animals, by animal products such as meat and milk, by the airborne route, and mechanical transfer on people, wild animals, birds, and by vehicles. During the outbreak of 2001 in the Netherlands, milk from dairy cattle was illegally discharged into the sewerage as a consequence of transport prohibition. This may lead to contaminated discharges of biologically treated and raw sewage in surface water that is given to cattle to drink. The objective of the present study was to assess the probability of infecting dairy cows that were drinking FMD virus contaminated surface water due to illegal discharges of contaminated milk. So, the following data were collected from literature: FMD virus inactivation in aqueous environments, FMD virus concentrations in milk, dilution in sewage water, virus removal by sewage treatment, dilution in surface water, water consumption of cows, size of a herd in a meadow, and dose-response data for ingested FMD virus by cattle. In the case of 1.6 x 10(2) FMD virus per milliliter in milk and discharge of treated sewage in surface water, the probability of infecting a herd of cows was estimated to be 3.3 x 10(-7) to 8.5 x 10(-5), dependent on dilution in the receiving surface water. In the case of discharge of raw sewage, all probabilities of infection were 100 times higher. In the case of little dilution in small rivers, the high level of 8.5 x 10(-3) is reached. For 10(4) times higher FMD virus concentrations in milk, the probabilities of infecting a herd of cows are high in the case of discharge of treated sewage (3.3 x 10(-3) to 5.7 x 10(-1)) and very high in the case of discharge of raw sewage (0.28-1.0). It can be concluded that illegal and uncontrolled discharges of contaminated milk into the sewerage system may lead to high risks to other cattle farms at 6-50 km distance of the location of discharge within one day. This clearly underlines current measures that prohibit such discharges, and also asks for strict control. This risk assessment clearly demonstrated the potential significance of FMD virus transmission via water, and the results will be useful on an international scale, and could also serve as a basis for other FMD risk-assessment models.  相似文献   

12.
Achieving health gains from the U.N. Sustainable Development Goals of universal coverage for water and sanitation will require interventions that can be widely adopted and maintained. Effectiveness—how an intervention performs based on actual use—as opposed to efficacy will therefore be central to evaluations of new and existing interventions. Incomplete compliance—when people do not always use the intervention and are therefore exposed to contamination—is thought to be responsible for the lower‐than‐expected risk reductions observed from water, sanitation, and hygiene interventions based on their efficacy at removing pathogens. We explicitly incorporated decision theory into a quantitative microbial risk assessment model. Specifically, we assume that the usability of household water treatment (HWT) devices (filters and chlorine) decreases as they become more efficacious due to issues such as taste or flow rates. Simulations were run to examine the tradeoff between device efficacy and usability. For most situations, HWT interventions that trade lower efficacy (i.e., remove less pathogens) for higher compliance (i.e., better usability) contribute substantial reductions in diarrheal disease risk compared to devices meeting current World Health Organization efficacy guidelines. Recommendations that take into account both the behavioral and microbiological properties of treatment devices are likely to be more effective at reducing the burden of diarrheal disease than current standards that only consider efficacy.  相似文献   

13.
《Risk analysis》2018,38(8):1718-1737
We developed a probabilistic mathematical model for the postharvest processing of leafy greens focusing on Escherichia coli O157:H7 contamination of fresh‐cut romaine lettuce as the case study. Our model can (i) support the investigation of cross‐contamination scenarios, and (ii) evaluate and compare different risk mitigation options. We used an agent‐based modeling framework to predict the pathogen prevalence and levels in bags of fresh‐cut lettuce and quantify spread of E. coli O157:H7 from contaminated lettuce to surface areas of processing equipment. Using an unbalanced factorial design, we were able to propagate combinations of random values assigned to model inputs through different processing steps and ranked statistically significant inputs with respect to their impacts on selected model outputs. Results indicated that whether contamination originated on incoming lettuce heads or on the surface areas of processing equipment, pathogen prevalence among bags of fresh‐cut lettuce and batches was most significantly impacted by the level of free chlorine in the flume tank and frequency of replacing the wash water inside the tank. Pathogen levels in bags of fresh‐cut lettuce were most significantly influenced by the initial levels of contamination on incoming lettuce heads or surface areas of processing equipment. The influence of surface contamination on pathogen prevalence or levels in fresh‐cut bags depended on the location of that surface relative to the flume tank. This study demonstrates that developing a flexible yet mathematically rigorous modeling tool, a “virtual laboratory,” can provide valuable insights into the effectiveness of individual and combined risk mitigation options.  相似文献   

14.
针对一个生鲜电商与一个生鲜供应商组成的供应链,其中生鲜电商负责销售农产品并提供增值服务,而生鲜供应商负责农产品的保鲜配送。考虑保鲜努力与服务水平均会影响生鲜农产品的市场需求,通过构建集中式与分散式下的生鲜电商供应链决策模型,分析了新鲜度需求弹性、服务需求弹性等因素对最优决策的影响,并对比分析了分散式与集中式决策下的最优决策。在此基础上,设计了"收益共享-双向成本分担"契约,通过合理设计契约参数实现了生鲜电商供应链的完美协调与帕累托改进。最后,进一步深入分析了供应链在协调前后的最优决策变化,并用数值算例进行了考察与验证。研究发现:供应链在协调后必然会提高产品新鲜度与服务水平,但可能会导致更低或更高的生鲜农产品销售价格。当新鲜度需求弹性与服务需求弹性较低时,生鲜电商在协调后会制定相对更低的产品价格,实施"优质低价"策略;而在新鲜度需求弹性或服务需求弹性高于某一水平时,生鲜电商在协调后会制定相对更高的产品价格,实施"优质优价"策略。  相似文献   

15.
《Risk analysis》2018,38(8):1738-1757
We developed a risk assessment of human salmonellosis associated with consumption of alfalfa sprouts in the United States to evaluate the public health impact of applying treatments to seeds (0–5‐log10 reduction in Salmonella ) and testing spent irrigation water (SIW) during production. The risk model considered variability and uncertainty in Salmonella contamination in seeds, Salmonella growth and spread during sprout production, sprout consumption, and Salmonella dose response. Based on an estimated prevalence of 2.35% for 6.8 kg seed batches and without interventions, the model predicted 76,600 (95% confidence interval (CI) 15,400 – 248,000) cases/year. Risk reduction (by 5 ‐ to 7‐fold) predicted from a 1‐log10 seed treatment alone was comparable to SIW testing alone, and each additional 1‐log10 seed treatment was predicted to provide a greater risk reduction than SIW testing. A 3‐log10 or a 5‐log10 seed treatment reduced the predicted cases/year to 139 (95% CI 33 – 448) or 1.4 (95% CI <1 – 4.5), respectively. Combined with SIW testing, a 3‐log10 or 5‐log10 seed treatment reduced the cases/year to 45 (95% CI 10–146) or <1 (95% CI <1 – 1.5), respectively. If the SIW coverage was less complete (i.e., less representative), a smaller risk reduction was predicted, e.g., a combined 3‐log10 seed treatment and SIW testing with 20% coverage resulted in an estimated 92 (95% CI 22 – 298) cases/year. Analysis of alternative scenarios using different assumptions for key model inputs showed that the predicted relative risk reductions are robust. This risk assessment provides a comprehensive approach for evaluating the public health impact of various interventions in a sprout production system.  相似文献   

16.
Risk Assessment of Virus in Drinking Water   总被引:15,自引:0,他引:15  
The reevaluation of drinking water treatment practices in a desire to minimize the formation of disinfection byproducts while assuring minimum levels of public health protection against infectious organisms has caused it to become necessary to consider the problem of estimation of risks posed from exposure to low levels of microorganisms, such as virus or protozoans, found in treated drinking water. This paper outlines a methodology based on risk assessment principles to approach the problem. The methodology is validated by comparison with results obtained in a prospective epidemiological study. It is feasible to produce both point and interval estimates of infection, illness and perhaps mortality by this methodology. Areas of uncertainty which require future data are indicated.  相似文献   

17.
The Bogotá River receives untreated wastewater from the city of Bogotá and many other towns. Downstream from Bogotá, water from the river is used for irrigation of crops. Concentrations of indicator organisms in the river are high, which is consistent with fecal contamination. To investigate the probability of illness due to exposure to enteric pathogens from the river, specifically Salmonella, we took water samples from the Bogotá River at six sampling locations in an area where untreated water from the river is used for irrigation of lettuce, broccoli, and cabbage. Salmonella concentrations were quantified by direct isolation and qPCR. Concentrations differed, depending on the quantification technique used, ranging between 107.7 and 109.9 number of copies of gene invA per L and 105.3 and 108.4 CFU/L, for qPCR and direct isolation, respectively. A quantitative microbial risk assessment model that estimates the daily risk of illness with Salmonella resulting from consuming raw unwashed vegetables irrigated with water from the Bogotá River was constructed using the Salmonella concentration data. The daily probability of illness from eating raw unwashed vegetables ranged between 0.62 and 0.85, 0.64 and 0.86, and 0.64 and 0.85 based on concentrations estimated by qPCR (0.47–0.85, 0.47–0.86, and 0.41–0.85 based on concentrations estimated by direct isolation) for lettuce, cabbage, and broccoli, respectively, which are all above the commonly propounded benchmark of 10?4 per year. Results obtained in this study highlight the necessity for appropriate wastewater treatment in the region, and emphasize the importance of postharvest practices, such as washing, disinfecting, and cooking.  相似文献   

18.
19.
Consumer Phase Risk Assessment for Listeria monocytogenes in Deli Meats   总被引:1,自引:0,他引:1  
The foodborne disease risk associated with the pathogen Listeria monocytogenes has been the subject of recent efforts in quantitative microbial risk assessment. Building upon one of these efforts undertaken jointly by the U.S. Food and Drug Administration and the U.S. Department of Agriculture (USDA), the purpose of this work was to expand on the consumer phase of the risk assessment to focus on handling practices in the home. One-dimensional Monte Carlo simulation was used to model variability in growth and cross-contamination of L. monocytogenes during food storage and preparation of deli meats. Simulations approximated that 0.3% of the servings were contaminated with >10(4) CFU/g of L. monocytogenes at the time of consumption. The estimated mean risk associated with the consumption of deli meats for the intermediate-age population was approximately 7 deaths per 10(11) servings. Food handling in homes increased the estimated mean mortality by 10(6)-fold. Of all the home food-handling practices modeled, inadequate storage, particularly refrigeration temperatures, provided the greatest contribution to increased risk. The impact of cross-contamination in the home was considerably less. Adherence to USDA Food Safety and Inspection Service recommendations for consumer handling of ready-to-eat foods substantially reduces the risk of listeriosis.  相似文献   

20.
The leaching of organotin (OT) heat stabilizers from polyvinyl chloride (PVC) pipes used in residential drinking water systems may affect the quality of drinking water. These OTs, principally mono- and di-substituted species of butyltins and methyltins, are a potential health concern because they belong to a broad class of compounds that may be immune, nervous, and reproductive system toxicants. In this article, we develop probability distributions of U.S. population exposures to mixtures of OTs encountered in drinking water transported by PVC pipes. We employed a family of mathematical models to estimate OT leaching rates from PVC pipe as a function of both surface area and time. We then integrated the distribution of estimated leaching rates into an exposure model that estimated the probability distribution of OT concentrations in tap waters and the resulting potential human OT exposures via tap water consumption. Our study results suggest that human OT exposures through tap water consumption are likely to be considerably lower than the World Health Organization (WHO) "safe" long-term concentration in drinking water (150 μg/L) for dibutyltin (DBT)—the most toxic of the OT considered in this article. The 90th percentile average daily dose (ADD) estimate of 0.034 ± 2.92 × 10−4μg/kg day is approximately 120 times lower than the WHO-based ADD for DBT (4.2 μg/kg day).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号