首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This study developed dose response models for determining the probability of eye or central nervous system infections from previously conducted studies using different strains of Acanthamoeba spp. The data were a result of animal experiments using mice and rats exposed corneally and intranasally to the pathogens. The corneal inoculations of Acanthamoeba isolate Ac 118 included varied amounts of Corynebacterium xerosis and were best fit by the exponential model. Virulence increased with higher levels of C. xerosis. The Acanthamoeba culbertsoni intranasal study with death as an endpoint of response was best fit by the beta‐Poisson model. The HN‐3 strain of A. castellanii was studied with an intranasal exposure and three different endpoints of response. For all three studies, the exponential model was the best fit. A model based on pooling data sets of the intranasal exposure and death endpoint resulted in an LD50 of 19,357 amebae. The dose response models developed in this study are an important step towards characterizing the risk associated with free‐living amoeba like Acanthamoeba in drinking water distribution systems. Understanding the human health risk posed by free‐living amoeba will allow for quantitative microbial risk assessments that support building design decisions to minimize opportunities for pathogen growth and survival.  相似文献   

3.
Charles N. Haas 《Risk analysis》2011,31(10):1576-1596
Human Brucellosis is one of the most common zoonotic diseases worldwide. Disease transmission often occurs through the handling of domestic livestock, as well as ingestion of unpasteurized milk and cheese, but can have enhanced infectivity if aerosolized. Because there is no human vaccine available, rising concerns about the threat of Brucellosis to human health and its inclusion in the Center for Disease Control's Category B Bioterrorism/Select Agent List make a better understanding of the dose‐response relationship of this microbe necessary. Through an extensive peer‐reviewed literature search, candidate dose‐response data were appraised so as to surpass certain standards for quality. The statistical programming language, “R,” was used to compute the maximum likelihood estimation to fit two models, the exponential and the approximate beta‐Poisson (widely used for quantitative risk assessment) to dose‐response data. Dose‐response models were generated for prevalent species of Brucella: Br. suis, Br. melitensis, and Br. abortus. Dose‐response models were created for aerosolized Br. suis exposure to guinea pigs from pooled studies. A parallel model for guinea pigs inoculated through both aerosol and subcutaneous routes with Br. melitensis showed that the median infectious dose corresponded to a 30 colony‐forming units (CFU) dose of Br. suis, much less than the N50 dose of about 94 CFU for Br. melitensis organisms. When Br. melitensis was tested subcutaneously on mice, the N50 dose was higher, 1,840 CFU. A dose‐response model was constructed from pooled data for mice, rhesus macaques, and humans inoculated through three routes (subcutaneously/aerosol/intradermally) with Br. melitensis.  相似文献   

4.
There is a need to advance our ability to characterize the risk of inhalational anthrax following a low‐dose exposure. The exposure scenario most often considered is a single exposure that occurs during an attack. However, long‐term daily low‐dose exposures also represent a realistic exposure scenario, such as what may be encountered by people occupying areas for longer periods. Given this, the objective of the current work was to model two rabbit inhalational anthrax dose‐response data sets. One data set was from single exposures to aerosolized Bacillus anthracis Ames spores. The second data set exposed rabbits repeatedly to aerosols of B. anthracis Ames spores. For the multiple exposure data the cumulative dose (i.e., the sum of the individual daily doses) was used for the model. Lethality was the response for both. Modeling was performed using Benchmark Dose Software evaluating six models: logprobit, loglogistic, Weibull, exponential, gamma, and dichotomous‐Hill. All models produced acceptable fits to either data set. The exponential model was identified as the best fitting model for both data sets. Statistical tests suggested there was no significant difference between the single exposure exponential model results and the multiple exposure exponential model results, which suggests the risk of disease is similar between the two data sets. The dose expected to cause 10% lethality was 15,600 inhaled spores and 18,200 inhaled spores for the single exposure and multiple exposure exponential dose‐response model, respectively, and the 95% lower confidence intervals were 9,800 inhaled spores and 9,200 inhaled spores, respectively.  相似文献   

5.
Dose Response for Infection by Escherichia coli O157:H7 from Outbreak Data   总被引:1,自引:0,他引:1  
In 1996, an outbreak of E. coli O157:H7-associated illness occurred in an elementary school in Japan. This outbreak has been studied in unusual detail, making this an important case for quantitative risk assessment. The availability of stored samples of the contaminated food allowed reliable estimation of exposure to the pathogens. Collection of fecal samples allowed assessment of the numbers infected, including asymptomatic cases. Comparison to other published dose-response studies for E. coli O157:H7 show that the strain that caused the outbreak studied here must have been considerably more infectious. We use this well-documented incident as an example to demonstrate how such information on the response to a single dose can be used for dose-response assessment. In particular, we demonstrate how the high infectivity limits the uncertainty in the low-dose region.  相似文献   

6.
The application of the exponential model is extended by the inclusion of new nonhuman primate (NHP), rabbit, and guinea pig dose‐lethality data for inhalation anthrax. Because deposition is a critical step in the initiation of inhalation anthrax, inhaled doses may not provide the most accurate cross‐species comparison. For this reason, species‐specific deposition factors were derived to translate inhaled dose to deposited dose. Four NHP, three rabbit, and two guinea pig data sets were utilized. Results from species‐specific pooling analysis suggested all four NHP data sets could be pooled into a single NHP data set, which was also true for the rabbit and guinea pig data sets. The three species‐specific pooled data sets could not be combined into a single generic mammalian data set. For inhaled dose, NHPs were the most sensitive (relative lowest LD50) species and rabbits the least. Improved inhaled LD50s proposed for use in risk assessment are 50,600, 102,600, and 70,800 inhaled spores for NHP, rabbit, and guinea pig, respectively. Lung deposition factors were estimated for each species using published deposition data from Bacillus spore exposures, particle deposition studies, and computer modeling. Deposition was estimated at 22%, 9%, and 30% of the inhaled dose for NHP, rabbit, and guinea pig, respectively. When the inhaled dose was adjusted to reflect deposited dose, the rabbit animal model appears the most sensitive with the guinea pig the least sensitive species.  相似文献   

7.
《Risk analysis》2018,38(3):429-441
The 2014 Ebola virus disease (EVD) outbreak affected several countries worldwide, including six West African countries. It was the largest Ebola epidemic in the history and the first to affect multiple countries simultaneously. Significant national and international delay in response to the epidemic resulted in 28,652 cases and 11,325 deaths. The aim of this study was to develop a risk analysis framework to prioritize rapid response for situations of high risk. Based on findings from the literature, sociodemographic features of the affected countries, and documented epidemic data, a risk scoring framework using 18 criteria was developed. The framework includes measures of socioeconomics, health systems, geographical factors, cultural beliefs, and traditional practices. The three worst affected West African countries (Guinea, Sierra Leone, and Liberia) had the highest risk scores. The scores were much lower in developed countries that experienced Ebola compared to West African countries. A more complex risk analysis framework using 18 measures was compared with a simpler one with 10 measures, and both predicted risk equally well. A simple risk scoring system can incorporate measures of hazard and impact that may otherwise be neglected in prioritizing outbreak response. This framework can be used by public health personnel as a tool to prioritize outbreak investigation and flag outbreaks with potentially catastrophic outcomes for urgent response. Such a tool could mitigate costly delays in epidemic response.  相似文献   

8.
9.
In evaluating the risk of exposure to health hazards, characterizing the dose‐response relationship and estimating acceptable exposure levels are the primary goals. In analyses of health risks associated with exposure to ionizing radiation, while there is a clear agreement that moderate to high radiation doses cause harmful effects in humans, little has been known about the possible biological effects at low doses, for example, below 0.1 Gy, which is the dose range relevant to most radiation exposures of concern today. A conventional approach to radiation dose‐response estimation based on simple parametric forms, such as the linear nonthreshold model, can be misleading in evaluating the risk and, in particular, its uncertainty at low doses. As an alternative approach, we consider a Bayesian semiparametric model that has a connected piece‐wise‐linear dose‐response function with prior distributions having an autoregressive structure among the random slope coefficients defined over closely spaced dose categories. With a simulation study and application to analysis of cancer incidence data among Japanese atomic bomb survivors, we show that this approach can produce smooth and flexible dose‐response estimation while reasonably handling the risk uncertainty at low doses and elsewhere. With relatively few assumptions and modeling options to be made by the analyst, the method can be particularly useful in assessing risks associated with low‐dose radiation exposures.  相似文献   

10.
Listeria monocytogenes is a leading cause of hospitalization, fetal loss, and death due to foodborne illnesses in the United States. A quantitative assessment of the relative risk of listeriosis associated with the consumption of 23 selected categories of ready‐to‐eat foods, published by the U.S. Department of Health and Human Services and the U.S. Department of Agriculture in 2003, has been instrumental in identifying the food products and practices that pose the greatest listeriosis risk and has guided the evaluation of potential intervention strategies. Dose‐response models, which quantify the relationship between an exposure dose and the probability of adverse health outcomes, were essential components of the risk assessment. However, because of data gaps and limitations in the available data and modeling approaches, considerable uncertainty existed. Since publication of the risk assessment, new data have become available for modeling L. monocytogenes dose‐response. At the same time, recent advances in the understanding of L. monocytogenes pathophysiology and strain diversity have warranted a critical reevaluation of the published dose‐response models. To discuss strategies for modeling L. monocytogenes dose‐response, the Interagency Risk Assessment Consortium (IRAC) and the Joint Institute for Food Safety and Applied Nutrition (JIFSAN) held a scientific workshop in 2011 (details available at http://foodrisk.org/irac/events/ ). The main findings of the workshop and the most current and relevant data identified during the workshop are summarized and presented in the context of L. monocytogenes dose‐response. This article also discusses new insights on dose‐response modeling for L. monocytogenes and research opportunities to meet future needs.  相似文献   

11.
Leptospirosis is a preeminent zoonotic disease concentrated in tropical areas, and prevalent in both industrialized and rural settings. Dose‐response models were generated from 22 data sets reported in 10 different studies. All of the selected studies used rodent subjects, primarily hamsters, with the predominant endpoint as mortality with the challenge strain administered intraperitoneally. Dose‐response models based on a single evaluation postinfection displayed median lethal dose (LD50) estimates that ranged between 1 and 107 leptospirae depending upon the strain's virulence and the period elapsed since the initial exposure inoculation. Twelve of the 22 data sets measured the number of affected subjects daily over an extended period, so dose‐response models with time‐dependent parameters were estimated. Pooling between data sets produced seven common dose‐response models and one time‐dependent model. These pooled common models had data sets with different test subject hosts, and between disparate leptospiral strains tested on identical hosts. Comparative modeling was done with parallel tests to test the effects of a single different variable of either strain or test host and quantify the difference by calculating a dose multiplication factor. Statistical pooling implies that the mechanistic processes of leptospirosis can be represented by the same dose‐response model for different experimental infection tests even though they may involve different host species, routes, and leptospiral strains, although the cause of this pathophysiological phenomenon has not yet been identified.  相似文献   

12.
Developmental anomalies resulting from prenatal toxicity can be manifested in terms of both malformations among surviving offspring and prenatal death. Although these two endpoints have traditionally been analyzed separately in the assessment of risk, multivariate methods of risk characterization have recently been proposed. We examined this and other issues in developmental toxicity risk assessment by evaluating the accuracy and precision of estimates of the effective dose ( ED 05) and the benchmark dose ( BMD 05) using computer simulation. Our results indicated that different variance structures (Dirichlet-trinomial and generalized linear model) used to characterize overdispersion yielded comparable results when fitting joint dose response models based on generalized estimating equations. (The choice of variance structure in separate modeling was also not critical.) However, using the Rao-Scott transformation to eliminate overdispersion tended to produce estimates of the ED 05 with reduced bias and mean squared error. Because joint modeling ensures that the ED 05 for overall toxicity (based on both malformations and prenatal death) is always less than the ED 05 for either malformations or prenatal death, joint modeling is preferred to separate modeling for risk assessment purposes.  相似文献   

13.
Evaluations of Listeria monocytogenes dose‐response relationships are crucially important for risk assessment and risk management, but are complicated by considerable variability across population subgroups and L. monocytogenes strains. Despite difficulties associated with the collection of adequate data from outbreak investigations or sporadic cases, the limitations of currently available animal models, and the inability to conduct human volunteer studies, some of the available data now allow refinements of the well‐established exponential L. monocytogenes dose response to more adequately represent extremely susceptible population subgroups and highly virulent L. monocytogenes strains. Here, a model incorporating adjustments for variability in L. monocytogenes strain virulence and host susceptibility was derived for 11 population subgroups with similar underlying comorbidities using data from multiple sources, including human surveillance and food survey data. In light of the unique inherent properties of L. monocytogenes dose response, a lognormal‐Poisson dose‐response model was chosen, and proved able to reconcile dose‐response relationships developed based on surveillance data with outbreak data. This model was compared to a classical beta‐Poisson dose‐response model, which was insufficiently flexible for modeling the specific case of L. monocytogenes dose‐response relationships, especially in outbreak situations. Overall, the modeling results suggest that most listeriosis cases are linked to the ingestion of food contaminated with medium to high concentrations of L. monocytogenes. While additional data are needed to refine the derived model and to better characterize and quantify the variability in L. monocytogenes strain virulence and individual host susceptibility, the framework derived here represents a promising approach to more adequately characterize the risk of listeriosis in highly susceptible population subgroups.  相似文献   

14.
Dose–response modeling of biological agents has traditionally focused on describing laboratory‐derived experimental data. Limited consideration has been given to understanding those factors that are controlled in a laboratory, but are likely to occur in real‐world scenarios. In this study, a probabilistic framework is developed that extends Brookmeyer's competing‐risks dose–response model to allow for variation in factors such as dose‐dispersion, dose‐deposition, and other within‐host parameters. With data sets drawn from dose–response experiments of inhalational anthrax, plague, and tularemia, we illustrate how for certain cases, there is the potential for overestimation of infection numbers arising from models that consider only the experimental data in isolation.  相似文献   

15.
The risk of catastrophic failures, for example in the aviation and aerospace industries, can be approached from different angles (e.g., statistics when they exist, or a detailed probabilistic analysis of the system). Each new accident carries information that has already been included in the experience base or constitutes new evidence that can be used to update a previous assessment of the risk. In this paper, we take a different approach and consider the risk and the updating from the investor's point of view. Based on the market response to past airplane accidents, we examine which ones have created a surprise response and which ones are considered part of the risk of the airline business as previously assessed. To do so, we quantify the magnitude and the timing of the observed market response to catastrophic accidents, and we compare it to an estimate of the response that would be expected based on the true actual cost of the accident including direct and indirect costs (full-cost information response). First, we develop a method based on stock market data to measure the actual market response to an accident and we construct an estimate of the full-cost information response to such an event. We then compare the two figures for the immediate and the long-term response of the market for the affected firm, as well as for the whole industry group to which the firm belongs. As an illustration, we analyze a sample of ten fatal accidents experienced by major US domestic airlines during the last seven years. In four cases, we observed an abnormal market response. In these instances, it seems that the shareholders may have updated their estimates of the probability of a future accident in the affected airlines or more generally of the firm's future business prospects. This market reaction is not always easy to explain much less to anticipate, a fact which management should bear in mind when planning a firm's response to such an event.  相似文献   

16.
Some viruses cause tumor regression and can be used to treat cancer patients; these viruses are called oncolytic viruses. To assess whether oncolytic viruses from animal origin excreted by patients pose a health risk for livestock, a quantitative risk assessment (QRA) was performed to estimate the risk for the Dutch pig industry after environmental release of Seneca Valley virus (SVV). The QRA assumed SVV excretion in stool by one cancer patient on Day 1 in the Netherlands, discharge of SVV with treated wastewater into the river Meuse, downstream intake of river water for drinking water production, and consumption of this drinking water by pigs. Dose–response curves for SVV infection and clinical disease in pigs were constructed from experimental data. In the worst scenario (four log10 virus reduction by drinking water treatment and a farm with 10,000 pigs), the infection risk is less than 1% with 95% certainty. The risk of clinical disease is almost seven orders of magnitude lower. Risks may increase proportionally with the numbers of treated patients and days of virus excretion. These data indicate that application of wild‐type oncolytic animal viruses may infect susceptible livestock. A QRA regarding the use of oncolytic animal virus is, therefore, highly recommended. For this, data on excretion by patients, and dose–response parameters for infection and clinical disease in livestock, should be studied.  相似文献   

17.
Legionnaires' disease (LD), first reported in 1976, is an atypical pneumonia caused by bacteria of the genus Legionella, and most frequently by L. pneumophila (Lp). Subsequent research on exposure to the organism employed various animal models, and with quantitative microbial risk assessment (QMRA) techniques, the animal model data may provide insights on human dose-response for LD. This article focuses on the rationale for selection of the guinea pig model, comparison of the dose-response model results, comparison of projected low-dose responses for guinea pigs, and risk estimates for humans. Based on both in vivo and in vitro comparisons, the guinea pig (Cavia porcellus) dose-response data were selected for modeling human risk. We completed dose-response modeling for the beta-Poisson (approximate and exact), exponential, probit, logistic, and Weibull models for Lp inhalation, mortality, and infection (end point elevated body temperature) in guinea pigs. For mechanistic reasons, including low-dose exposure probability, further work on human risk estimates for LD employed the exponential and beta-Poisson models. With an exposure of 10 colony-forming units (CFU) (retained dose), the QMRA model predicted a mild infection risk of 0.4 (as evaluated by seroprevalence) and a clinical severity LD case (e.g., hospitalization and supportive care) risk of 0.0009. The calculated rates based on estimated human exposures for outbreaks used for the QMRA model validation are within an order of magnitude of the reported LD rates. These validation results suggest the LD QMRA animal model selection, dose-response modeling, and extension to human risk projections were appropriate.  相似文献   

18.
The numeral unit spread assessment pedigree (NUSAP) system was implemented to evaluate the quality of input parameters in a quantitative microbial risk assessment (QMRA) model for Salmonella spp. in minced pork meat. The input parameters were grouped according to four successive exposure pathways: (1) primary production (2) transport, holding, and slaughterhouse, (3) postprocessing, distribution, and storage, and (4) preparation and consumption. An inventory of 101 potential input parameters was used for building the QMRA model. The characteristics of each parameter were defined using a standardized procedure to assess (1) the source of information, (2) the sampling methodology and sample size, and (3) the distributional properties of the estimate. Each parameter was scored by a panel of experts using a pedigree matrix containing four criteria (proxy, empirical basis, method, and validation) to assess the quality, and this was graphically represented by means of kite diagrams. The parameters obtained significantly lower scores for the validation criterion as compared with the other criteria. Overall strengths of parameters related to the primary production module were significantly stronger compared to the other modules (the transport, holding, and slaughterhouse module, the processing, distribution, and storage module, and the preparation and consumption module). The pedigree assessment contributed to select 20 parameters, which were subsequently introduced in the QMRA model. The NUSAP methodology and kite diagrams are objective tools to discuss and visualize the quality of the parameters in a structured way. These two tools can be used in the selection procedure of input parameters for a QMRA, and can lead to a more transparent quality assurance in the QMRA.  相似文献   

19.
Ethylene oxide (EO) has been identified as a carcinogen in laboratory animals. Although the precise mechanism of action is not known, tumors in animals exposed to EO are presumed to result from its genotoxicity. The overall weight of evidence for carcinogenicity from a large body of epidemiological data in the published literature remains limited. There is some evidence for an association between EO exposure and lympho/hematopoietic cancer mortality. Of these cancers, the evidence provided by two large cohorts with the longest follow-up is most consistent for leukemia. Together with what is known about human leukemia and EO at the molecular level, there is a body of evidence that supports a plausible mode of action for EO as a potential leukemogen. Based on a consideration of the mode of action, the events leading from EO exposure to the development of leukemia (and therefore risk) are expected to be proportional to the square of the dose. In support of this hypothesis, a quadratic dose-response model provided the best overall fit to the epidemiology data in the range of observation. Cancer dose-response assessments based on human and animal data are presented using three different assumptions for extrapolating to low doses: (1) risk is linearly proportionate to dose; (2) there is no appreciable risk at low doses (margin-of-exposure or reference dose approach); and (3) risk below the point of departure continues to be proportionate to the square of the dose. The weight of evidence for EO supports the use of a nonlinear assessment. Therefore, exposures to concentrations below 37 microg/m3 are not likely to pose an appreciable risk of leukemia in human populations. However, if quantitative estimates of risk at low doses are desired and the mode of action for EO is considered, these risks are best quantified using the quadratic estimates of cancer potency, which are approximately 3.2- to 32-fold lower, using alternative points of departure, than the linear estimates of cancer potency for EO. An approach is described for linking the selection of an appropriate point of departure to the confidence in the proposed mode of action. Despite high confidence in the proposed mode of action, a small linear component for the dose-response relationship at low concentrations cannot be ruled out conclusively. Accordingly, a unit risk value of 4.5 x 10(-8) (microg/m3)(-1) was derived for EO, with a range of unit risk values of 1.4 x 10(-8) to 1.4 x 10(-7) (microg/m3)(-1) reflecting the uncertainty associated with a theoretical linear term at low concentrations.  相似文献   

20.
In the quest to model various phenomena, the foundational importance of parameter identifiability to sound statistical modeling may be less well appreciated than goodness of fit. Identifiability concerns the quality of objective information in data to facilitate estimation of a parameter, while nonidentifiability means there are parameters in a model about which the data provide little or no information. In purely empirical models where parsimonious good fit is the chief concern, nonidentifiability (or parameter redundancy) implies overparameterization of the model. In contrast, nonidentifiability implies underinformativeness of available data in mechanistically derived models where parameters are interpreted as having strong practical meaning. This study explores illustrative examples of structural nonidentifiability and its implications using mechanistically derived models (for repeated presence/absence analyses and dose–response of Escherichia coli O157:H7 and norovirus) drawn from quantitative microbial risk assessment. Following algebraic proof of nonidentifiability in these examples, profile likelihood analysis and Bayesian Markov Chain Monte Carlo with uniform priors are illustrated as tools to help detect model parameters that are not strongly identifiable. It is shown that identifiability should be considered during experimental design and ethics approval to ensure generated data can yield strong objective information about all mechanistic parameters of interest. When Bayesian methods are applied to a nonidentifiable model, the subjective prior effectively fabricates information about any parameters about which the data carry no objective information. Finally, structural nonidentifiability can lead to spurious models that fit data well but can yield severely flawed inferences and predictions when they are interpreted or used inappropriately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号