首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
Ongoing publicity about methyl tertiary butyl ether (MTBE) suggests that this chemical is of greater concern than other contaminants commonly found in drinking water. The purpose of this article is to evaluate the available MTBE data in context with other volatile organic compounds (VOCs) that are detected in public drinking water sources in California. We find that of the 28 VOCs with a primary maximum contaminant level (MCL) in California, 21 were found in 50 or more drinking water sources from 1985 to 2002. Over the last 10 years, the most frequently detected VOCs were chloroform, tetrachloroethylene (PCE), and trichloroethylene (TCE), which were found in about 9-15% of all sampled drinking water sources. These same chemicals were found to have the highest mean detected concentrations over the last 5 years, ranging from 13 to 15 microg/L. Many VOCs were also found to routinely exceed state and federal drinking water standards, including benzene and carbon tetrachloride. By comparison, MTBE was found in approximately 1% of sampled drinking water sources for most years, and of those drinking water sources found to contain MTBE from 1998 to 2002, over 90% had detected concentrations below California's primary MCL of 13 microg/L. Relative to the other VOCs evaluated, MTBE has the lowest estimated California cancer potency value, and was found to pose one of the least cancer risks from household exposures to contaminated drinking water. These findings suggest that MTBE poses an insignificant threat to public drinking water supplies and public health in California, particularly when compared to other common drinking water contaminants.  相似文献   

2.
The primary source of evidence that inorganic arsenic in drinking water is associated with increased mortality from cancer at internal sites (bladder, liver, lung, and other organs) is a large ecologic study conducted in regions of Southwest Taiwan endemic to Blackfoot disease. The dose-response patterns for lung, liver, and bladder cancers display a nonlinear dose-response relationship with arsenic exposure. The data do not appear suitable, however, for the more refined task of dose-response assessment, particularly for inference of risk at the low arsenic concentrations found in some U.S. water supplies. The problem lies in variable arsenic concentrations between the wells within a village, largely due to a mix of shallow wells and deep artesian wells, and in having only one well test for 24 (40%) of the 60 villages. The current analysis identifies 14 villages where the exposure appears most questionable, based on criteria described in the text. The exposure values were then changed for seven of the villages, from the median well test being used as a default to some other point in the village's range of well tests that would contribute to smoothing the appearance of a dose-response curve. The remaining seven villages, six of which had only one well test, were deleted as outliers. The resultant dose-response patterns showed no evidence of excess risk below arsenic concentrations of 0.1 mg/l. Of course, that outcome is dependent on manipulation of the data, as described. Inclusion of the seven deleted villages would make estimates of risk much higher at low doses. In those seven villages, the cancer mortality rates are significantly high for their exposure levels, suggesting that their exposure values may be too low or that other etiological factors need to be taken into account.  相似文献   

3.
Risk Characterization of Methyl tertiary Butyl Ether (MTBE) in Tap Water   总被引:1,自引:0,他引:1  
Methyl tertiary butyl ether (MTBE) can enter surface water and groundwater through wet atmospheric deposition or as a result of fuel leaks and spills. About 30% of the U.S. population lives in areas where MTBE is in regular use. Ninety-five percent of this population is unlikely to be exposed to MTBE in tap water at concentrations exceeding 2 ppb, and most will be exposed to concentrations that are much lower and may be zero. About 5% of this population may be exposed to higher levels of MTBE in tap water, resulting from fuel tank leaks and spills into surface or groundwater used for potable water supplies. This paper describes the concentration ranges found and anticipated in surface and groundwater, and estimates the distribution of doses experienced by humans using water containing MTBE to drink, prepare food, and shower/bathe. The toxic properties (including potency) of MTBE when ingested, inhaled, and in contact with the skin are summarized. Using a range of human toxic potency values derived from animal studies, margins of exposure (MOE) associated with alternative chronic exposure scenarios are estimated to range from 1700 to 140,000. Maximum concentrations of MTBE in tap water anticipated not to cause adverse health effects are determined to range from 700 to 14,000 ppb. The results of this analysis demonstrate that no health risks are likely to be associated with chronic and subchronic human exposures to MTBE in tap water. Although some individuals may be exposed to very high concentrations of MTBE in tap water immediately following a localized spill, these exposures are likely to be brief in duration due to large-scale dilution and rapid volatilization of MTBE, the institution of emergency response and remediation measures to minimize human exposures, and the low taste and odor thresholds of MTBE which ensure that its presence in tap water is readily detected at concentrations well below the threshold for human injury.  相似文献   

4.
The aim of this study was to develop a modified quantitative microbial risk assessment (QMRA) framework that could be applied as a decision support tool to choose between alternative drinking water interventions in the developing context. The impact of different household water treatment (HWT) interventions on the overall incidence of diarrheal disease and disability adjusted life years (DALYs) was estimated, without relying on source water pathogen concentration as the starting point for the analysis. A framework was developed and a software tool constructed and then implemented for an illustrative case study for Nepal based on published scientific data. Coagulation combined with free chlorine disinfection provided the greatest estimated health gains in the short term; however, when long‐term compliance was incorporated into the calculations, the preferred intervention was porous ceramic filtration. The model demonstrates how the QMRA framework can be used to integrate evidence from different studies to inform management decisions, and in particular to prioritize the next best intervention with respect to estimated reduction in diarrheal incidence. This study only considered HWT interventions; it is recognized that a systematic consideration of sanitation, recreation, and drinking water pathways is important for effective management of waterborne transmission of pathogens, and the approach could be expanded to consider the broader water‐related context.  相似文献   

5.
Chloroform is a carcinogen in rodents and its carcinogenicity is secondary to events associated with cytotoxicity and regenerative cell proliferation. In this study, a physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model that links the processes of chloroform metabolism, reparable cell damage, cell death, and regenerative cellular proliferation was developed to support a new cancer dose-response assessment for chloroform. Model parameters were estimated using Markov Chain Monte Carlo (MCMC) analysis in a two-step approach: (1) metabolism parameters for male and female mice and rats were estimated against available closed chamber gas uptake data; and (2) PD parameters for each of the four rodent groups were estimated from hepatic and renal labeling index data following inhalation exposures. Subsequently, the resulting rodent PD parameters together with literature values for human age-dependent physiological and metabolism parameters were used to scale up the rodent model to a human model. The human model was used to predict exposure conditions under which chloroform-mediated cytolethality is expected to occur in liver and kidney of adults and children. Using the human model, inhalation Reference Concentrations (RfCs) and oral Reference Doses (RfDs) were derived using an uncertainty factor of 10. Based on liver and kidney dose metrics, the respective RfCs were 0.9 and 0.09 ppm; and the respective RfDs were 0.4 and 3 mg/kg/day.  相似文献   

6.
Legislative mandates have resulted in large-scale conversion from groundwater to surface water sources of supply for Public Water Supply Systems in Harris and Galveston Counties, Texas. Geographically-defined Regulatory Areas in the region are governed by the Harris Galveston Coastal Subsidence District. The district's mission, to end subsidence or loss of land elevation by allocating water usage by Area, has focused attention on potential health hazards and monetary issues related to substandard water quality and increased consumer utility rates. Study variables of: (1) Total Hardness (TH); (2) Total Trihalomethanes (TTHMs) concentrations; and (3) Water Utility Rates ($), were compared for each water source because of their suggested impacts on human health (TH:CVD; TTHMs:Cancer) and relative economic welfare (Utility Rates: $) as byproducts of current mandate requirements. Strong evidence of statistically significant differences in water quality parameters, and utility rates of groundwater and surface water source data, suggest that regulations dictating conversion need review and possible amending. This presentation describes the results of a 2-year study of the issues regarding conversion of Public Water supplies from groundwater to surface water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号