首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hormetic effects have been observed at low exposure levels based on the dose-response pattern of data from developmental toxicity studies. This indicates that there might actually be a reduced risk of exhibiting toxic effects at low exposure levels. Hormesis implies the existence of a threshold dose level and there are dose-response models that include parameters that account for the threshold. We propose a function that introduces a parameter to account for hormesis. This function is a subset of the set of all functions that could represent a hormetic dose-response relationship at low exposure levels to toxic agents. We characterize the overall dose-response relationship with a piecewise function that consists of a hormetic u-shape curve at low dose levels and a logistic curve at high dose levels. We apply our model to a data set from an experiment conducted at the National Toxicology Program (NTP). We also use the beta-binomial distribution to model the litter response data. It can be seen by observing the structure of these data that current experimental designs for developmental studies employ a limited number of dose groups. These designs may not be satisfactory when the goal is to illustrate the existence of hormesis. In particular, increasing the number of low-level doses improves the power for detecting hormetic effects. Therefore, we also provide the results of simulations that were done to characterize the power of current designs in detecting hormesis and to demonstrate how this power can be improved upon by altering these designs with the addition of only a few low exposure levels.  相似文献   

2.
Estimates of dermal dose from exposures to toxic chemicals are typically derived using models that assume instantaneous establishment of steady-state dermal mass flux. However, dermal absorption theory indicates that this assumption is invalid for short-term exposures to volatile organic chemicals (VOCs). A generalized distributed parameter physiologically-based pharmacokinetic model (DP-PBPK), which describes unsteady state dermal mass flux via a partial differential equation (Fickian diffusion), has been developed for inhalation and dermal absorption of VOCs. In the present study, the DP-PBPK model has been parameterized for chloroform, and compared with two simpler PBPK models of chloroform. The latter are lumped parameter models, employing ordinary differential equations, that do not account for the dermal absorption time lag associated with the accumulation of permeant chemical in tissue represented by permeability coefficients. All three models were evaluated by comparing simulated post-exposure exhaled breath concentration profiles with measured concentrations following environmental chloroform exposures. The DP-PBPK model predicted a time-lag in the exhaled breath concentration profile, consistent with the experimental data. The DP-PBPK model also predicted significant volatilization of chloroform, for a simulated dermal exposure scenario. The end-exposure dermal dose predicted by the DP-PBPK model is similar to that predicted by the EPA recommended method for short-term exposures, and is significantly greater than the end-exposure dose predicted by the lumped parameter models. However, the net dermal dose predicted by the DP-PBPK model is substantially less than that predicted by the EPA method, due to the post-exposure volatilization predicted by the DP-PBPK model. Moreover, the net dermal dose of chloroform predicted by all three models was nearly the same, even though the lumped parameter models did not predict substantial volatilization.  相似文献   

3.
Armand Maul 《Risk analysis》2014,34(9):1606-1617
Microbial risk assessment is dependent on several biological and environmental factors that affect both the exposure characteristics to the biological agents and the mechanisms of pathogenicity involved in the pathogen‐host relationship. Many exposure assessment studies still focus on the location parameters of the probability distribution representing the concentration of the pathogens and/or toxin. However, the mean or median by themselves are insufficient to evaluate the adverse effects that are associated with a given level of exposure. Therefore, the effects on the risk of disease of a number of factors, including the shape parameters characterizing the distribution patterns of the pathogen in their environment, were investigated. The statistical models, which were developed to provide a better understanding of the factors influencing the risk, highlight the role of heterogeneity and its consequences on the commonly used risk assessment paradigm. Indeed, the heterogeneity characterizing the spatial and temporal distribution of the pathogen and/or the toxin contained in the water or food consumed is shown to be a major factor that may influence the magnitude of the risk dramatically. In general, the risk diminishes with higher levels of heterogeneity. This scheme is totally inverted in the presence of a threshold in the dose‐response relationship, since heterogeneity will then have a tremendous impact, namely, by magnifying the risk when the mean concentration of pathogens is below the threshold. Moreover, the approach of this article may be useful for risk ranking analysis, regarding different exposure conditions, and may also lead to improved water and food quality guidelines.  相似文献   

4.
利率期限结构模型非线性建模   总被引:2,自引:2,他引:2  
应用门限模型对利率期限结构模型中漂移项的非线性性进行建模,提出门限(threshold)CKLS模型。用基于自助法(bootstrap)的广义拟似然比检验方法对门限CKLS模型进行了检验。检验结论表明:门限CKLS模型能较好的刻画利率期限结构模型中漂移项的非线性,在0.1的显著水平下优于CKLS模型。  相似文献   

5.
Mycobacterium avium subspecies paratuberculosis (MAP) causes chronic inflammation of the intestines in humans, ruminants, and other species. It is the causative agent of Johne's disease in cattle, and has been implicated as the causative agent of Crohn's disease in humans. To date, no quantitative microbial risk assessment (QMRA) for MAP utilizing a dose‐response function exists. The objective of this study is to develop a nested dose‐response model for infection from oral exposure to MAP utilizing data from the peer‐reviewed literature. Four studies amenable to dose‐response modeling were identified in the literature search and optimized to the one‐parameter exponential or two‐parameter beta‐Poisson dose‐response models. A nesting analysis was performed on all permutations of the candidate data sets to determine the acceptability of pooling data sets across host species. Three of four data sets exhibited goodness of fit to at least one model. All three data sets exhibited good fit to the beta‐Poisson model, and one data set exhibited goodness of fit, and best fit, to the exponential model. Two data sets were successfully nested using the beta‐Poisson model with parameters α = 0.0978 and N50 = 2.70 × 102 CFU. These data sets were derived from sheep and red deer host species, indicating successful interspecies nesting, and demonstrate the highly infective nature of MAP. The nested dose‐response model described should be used for future QMRA research regarding oral exposure to MAP.  相似文献   

6.
This study utilizes old and new Norovirus (NoV) human challenge data to model the dose‐response relationship for human NoV infection. The combined data set is used to update estimates from a previously published beta‐Poisson dose‐response model that includes parameters for virus aggregation and for a beta‐distribution that describes variable susceptibility among hosts. The quality of the beta‐Poisson model is examined and a simpler model is proposed. The new model (fractional Poisson) characterizes hosts as either perfectly susceptible or perfectly immune, requiring a single parameter (the fraction of perfectly susceptible hosts) in place of the two‐parameter beta‐distribution. A second parameter is included to account for virus aggregation in the same fashion as it is added to the beta‐Poisson model. Infection probability is simply the product of the probability of nonzero exposure (at least one virus or aggregate is ingested) and the fraction of susceptible hosts. The model is computationally simple and appears to be well suited to the data from the NoV human challenge studies. The model's deviance is similar to that of the beta‐Poisson, but with one parameter, rather than two. As a result, the Akaike information criterion favors the fractional Poisson over the beta‐Poisson model. At low, environmentally relevant exposure levels (<100), estimation error is small for the fractional Poisson model; however, caution is advised because no subjects were challenged at such a low dose. New low‐dose data would be of great value to further clarify the NoV dose‐response relationship and to support improved risk assessment for environmentally relevant exposures.  相似文献   

7.
In order to develop a dose‐response model for SARS coronavirus (SARS‐CoV), the pooled data sets for infection of transgenic mice susceptible to SARS‐CoV and infection of mice with murine hepatitis virus strain 1, which may be a clinically relevant model of SARS, were fit to beta‐Poisson and exponential models with the maximum likelihood method. The exponential model (k= 4.1 × l02) could describe the dose‐response relationship of the pooled data sets. The beta‐Poisson model did not provide a statistically significant improvement in fit. With the exponential model, the infectivity of SARS‐CoV was calculated and compared with those of other coronaviruses. The does of SARS‐CoV corresponding to 10% and 50% responses (illness) were estimated at 43 and 280 PFU, respectively. Its estimated infectivity was comparable to that of HCoV‐229E, known as an agent of human common cold, and also similar to those of some animal coronaviruses belonging to the same genetic group. Moreover, the exponential model was applied to the analysis of the epidemiological data of SARS outbreak that occurred at an apartment complex in Hong Kong in 2003. The estimated dose of SARS‐CoV for apartment residents during the outbreak, which was back‐calculated from the reported number of cases, ranged from 16 to 160 PFU/person, depending on the floor. The exponential model developed here is the sole dose‐response model for SARS‐CoV at the present and would enable us to understand the possibility for reemergence of SARS.  相似文献   

8.
Leptospirosis is a preeminent zoonotic disease concentrated in tropical areas, and prevalent in both industrialized and rural settings. Dose‐response models were generated from 22 data sets reported in 10 different studies. All of the selected studies used rodent subjects, primarily hamsters, with the predominant endpoint as mortality with the challenge strain administered intraperitoneally. Dose‐response models based on a single evaluation postinfection displayed median lethal dose (LD50) estimates that ranged between 1 and 107 leptospirae depending upon the strain's virulence and the period elapsed since the initial exposure inoculation. Twelve of the 22 data sets measured the number of affected subjects daily over an extended period, so dose‐response models with time‐dependent parameters were estimated. Pooling between data sets produced seven common dose‐response models and one time‐dependent model. These pooled common models had data sets with different test subject hosts, and between disparate leptospiral strains tested on identical hosts. Comparative modeling was done with parallel tests to test the effects of a single different variable of either strain or test host and quantify the difference by calculating a dose multiplication factor. Statistical pooling implies that the mechanistic processes of leptospirosis can be represented by the same dose‐response model for different experimental infection tests even though they may involve different host species, routes, and leptospiral strains, although the cause of this pathophysiological phenomenon has not yet been identified.  相似文献   

9.
Evaluations of Listeria monocytogenes dose‐response relationships are crucially important for risk assessment and risk management, but are complicated by considerable variability across population subgroups and L. monocytogenes strains. Despite difficulties associated with the collection of adequate data from outbreak investigations or sporadic cases, the limitations of currently available animal models, and the inability to conduct human volunteer studies, some of the available data now allow refinements of the well‐established exponential L. monocytogenes dose response to more adequately represent extremely susceptible population subgroups and highly virulent L. monocytogenes strains. Here, a model incorporating adjustments for variability in L. monocytogenes strain virulence and host susceptibility was derived for 11 population subgroups with similar underlying comorbidities using data from multiple sources, including human surveillance and food survey data. In light of the unique inherent properties of L. monocytogenes dose response, a lognormal‐Poisson dose‐response model was chosen, and proved able to reconcile dose‐response relationships developed based on surveillance data with outbreak data. This model was compared to a classical beta‐Poisson dose‐response model, which was insufficiently flexible for modeling the specific case of L. monocytogenes dose‐response relationships, especially in outbreak situations. Overall, the modeling results suggest that most listeriosis cases are linked to the ingestion of food contaminated with medium to high concentrations of L. monocytogenes. While additional data are needed to refine the derived model and to better characterize and quantify the variability in L. monocytogenes strain virulence and individual host susceptibility, the framework derived here represents a promising approach to more adequately characterize the risk of listeriosis in highly susceptible population subgroups.  相似文献   

10.
The application of quantitative microbial risk assessments (QMRAs) to understand and mitigate risks associated with norovirus is increasingly common as there is a high frequency of outbreaks worldwide. A key component of QMRA is the dose–response analysis, which is the mathematical characterization of the association between dose and outcome. For Norovirus, multiple dose–response models are available that assume either a disaggregated or an aggregated intake dose. This work reviewed the dose–response models currently used in QMRA, and compared predicted risks from waterborne exposures (recreational and drinking) using all available dose–response models. The results found that the majority of published QMRAs of norovirus use the 1F1 hypergeometric dose–response model with α = 0.04, β = 0.055. This dose–response model predicted relatively high risk estimates compared to other dose–response models for doses in the range of 1–1,000 genomic equivalent copies. The difference in predicted risk among dose–response models was largest for small doses, which has implications for drinking water QMRAs where the concentration of norovirus is low. Based on the review, a set of best practices was proposed to encourage the careful consideration and reporting of important assumptions in the selection and use of dose–response models in QMRA of norovirus. Finally, in the absence of one best norovirus dose–response model, multiple models should be used to provide a range of predicted outcomes for probability of infection.  相似文献   

11.
Listeria monocytogenes is a leading cause of hospitalization, fetal loss, and death due to foodborne illnesses in the United States. A quantitative assessment of the relative risk of listeriosis associated with the consumption of 23 selected categories of ready‐to‐eat foods, published by the U.S. Department of Health and Human Services and the U.S. Department of Agriculture in 2003, has been instrumental in identifying the food products and practices that pose the greatest listeriosis risk and has guided the evaluation of potential intervention strategies. Dose‐response models, which quantify the relationship between an exposure dose and the probability of adverse health outcomes, were essential components of the risk assessment. However, because of data gaps and limitations in the available data and modeling approaches, considerable uncertainty existed. Since publication of the risk assessment, new data have become available for modeling L. monocytogenes dose‐response. At the same time, recent advances in the understanding of L. monocytogenes pathophysiology and strain diversity have warranted a critical reevaluation of the published dose‐response models. To discuss strategies for modeling L. monocytogenes dose‐response, the Interagency Risk Assessment Consortium (IRAC) and the Joint Institute for Food Safety and Applied Nutrition (JIFSAN) held a scientific workshop in 2011 (details available at http://foodrisk.org/irac/events/ ). The main findings of the workshop and the most current and relevant data identified during the workshop are summarized and presented in the context of L. monocytogenes dose‐response. This article also discusses new insights on dose‐response modeling for L. monocytogenes and research opportunities to meet future needs.  相似文献   

12.
13.
In evaluating the risk of exposure to health hazards, characterizing the dose‐response relationship and estimating acceptable exposure levels are the primary goals. In analyses of health risks associated with exposure to ionizing radiation, while there is a clear agreement that moderate to high radiation doses cause harmful effects in humans, little has been known about the possible biological effects at low doses, for example, below 0.1 Gy, which is the dose range relevant to most radiation exposures of concern today. A conventional approach to radiation dose‐response estimation based on simple parametric forms, such as the linear nonthreshold model, can be misleading in evaluating the risk and, in particular, its uncertainty at low doses. As an alternative approach, we consider a Bayesian semiparametric model that has a connected piece‐wise‐linear dose‐response function with prior distributions having an autoregressive structure among the random slope coefficients defined over closely spaced dose categories. With a simulation study and application to analysis of cancer incidence data among Japanese atomic bomb survivors, we show that this approach can produce smooth and flexible dose‐response estimation while reasonably handling the risk uncertainty at low doses and elsewhere. With relatively few assumptions and modeling options to be made by the analyst, the method can be particularly useful in assessing risks associated with low‐dose radiation exposures.  相似文献   

14.
We develop a new quantile‐based panel data framework to study the nature of income persistence and the transmission of income shocks to consumption. Log‐earnings are the sum of a general Markovian persistent component and a transitory innovation. The persistence of past shocks to earnings is allowed to vary according to the size and sign of the current shock. Consumption is modeled as an age‐dependent nonlinear function of assets, unobservable tastes, and the two earnings components. We establish the nonparametric identification of the nonlinear earnings process and of the consumption policy rule. Exploiting the enhanced consumption and asset data in recent waves of the Panel Study of Income Dynamics, we find that the earnings process features nonlinear persistence and conditional skewness. We confirm these results using population register data from Norway. We then show that the impact of earnings shocks varies substantially across earnings histories, and that this nonlinearity drives heterogeneous consumption responses. The framework provides new empirical measures of partial insurance in which the transmission of income shocks to consumption varies systematically with assets, the level of the shock, and the history of past shocks.  相似文献   

15.
This article describes the development of a weighted composite dose – response model for human salmonellosis. Data from previously reported human challenge studies were categorized into two different groups representing low and moderately virulent/pathogenic Salmonella strains based on a disease end point. Because epidemiological data indicate that some Salmonella strains are particularly pathogenic, and in the absence of human feeding study data for such strains, Shigella dysenteriae was used as a proxy for highly virulent strains. Three single-hit dose – response models were applied to the human feeding study data and evaluated for best fit using maximum likelihood estimation: (1) the exponential (E-1pop), (2) the two-subpopulation exponential (E-2pop), and (3) the Beta-Poisson (BP). Based on the goodness-of-fit test, the E-1pop and BP were the best-fit models for low and moderately virulent/pathogenic Salmonella strains, and the E-2pop and BP models were better for highly virulent/pathogenic strains. Epistemic analysis was conducted by determining the degree of confidence associated with the selected models, which was found to be 50%/50% (E-1pop/BP) for low and moderately pathogenic Salmonella strains, and 9.8%/90.2% (E-2pop/BP) for highly virulent strains. The degree of confidence for each component model and variations in the proportion of strains within each virulence/pathogenicity category were incorporated into the overall composite model. This study describes the influence of variation in strain virulence and host susceptibility on the shape of the population dose – response relationship.  相似文献   

16.
The aim of this study was to evaluate the effects of implemented control measures to reduce illness induced by Vibrio parahaemolyticus (V. parahaemolyticus) in horse mackerel (Trachurus japonicus), seafood that is commonly consumed raw in Japan. On the basis of currently available experimental and survey data, we constructed a quantitative risk model of V. parahaemolyticus in horse mackerel from harvest to consumption. In particular, the following factors were evaluated: bacterial growth at all stages, effects of washing the fish body and storage water, and bacterial transfer from the fish surface, gills, and intestine to fillets during preparation. New parameters of the beta‐Poisson dose‐response model were determined from all human feeding trials, some of which have been used for risk assessment by the U.S. Food and Drug Administration (USFDA). The probability of illness caused by V. parahaemolyticus was estimated using both the USFDA dose‐response parameters and our parameters for each selected pathway of scenario alternatives: washing whole fish at landing, storage in contaminated water, high temperature during transportation, and washing fish during preparation. The last scenario (washing fish during preparation) was the most effective for reducing the risk of illness by about a factor of 10 compared to no washing at this stage. Risk of illness increased by 50% by exposure to increased temperature during transportation, according to our assumptions of duration and temperature. The other two scenarios did not significantly affect risk. The choice of dose‐response parameters was not critical for evaluation of control measures.  相似文献   

17.
Mark P. van  Veen 《Risk analysis》1996,16(3):331-338
To assess exposure to and uptake of chemical compounds from consumer products, a general model framework is proposed. The model framework separates exposure into the components contact, potential exposure, and potential uptake rate, and establishes the relation between the three. It adds a contact function and a spatial component to other exposure modeling concepts. Before the model framework can be used, its components need to be specified. A simple diffusional model is built as an example of specifying functions for exposure and uptake. A case study of 1,1,1 trichloroethane in some shoe impregnating product, partly based on the diffusional uptake model, illustrates the inclusion of the contact component. In the latter example, the exposure is calculated for the user and then, by only modifying the contact component, for a nonuser randomly walking in the house.  相似文献   

18.
《Risk analysis》2018,38(8):1685-1700
Military health risk assessors, medical planners, operational planners, and defense system developers require knowledge of human responses to doses of biothreat agents to support force health protection and chemical, biological, radiological, nuclear (CBRN) defense missions. This article reviews extensive data from 118 human volunteers administered aerosols of the bacterial agent Francisella tularensis , strain Schu S4, which causes tularemia. The data set includes incidence of early‐phase febrile illness following administration of well‐characterized inhaled doses of F. tularensis . Supplemental data on human body temperature profiles over time available from de‐identified case reports is also presented. A unified, logically consistent model of early‐phase febrile illness is described as a lognormal dose–response function for febrile illness linked with a stochastic time profile of fever. Three parameters are estimated from the human data to describe the time profile: incubation period or onset time for fever; rise time of fever; and near‐maximum body temperature. Inhaled dose‐dependence and variability are characterized for each of the three parameters. These parameters enable a stochastic model for the response of an exposed population through incorporation of individual‐by‐individual variability by drawing random samples from the statistical distributions of these three parameters for each individual. This model provides risk assessors and medical decisionmakers reliable representations of the predicted health impacts of early‐phase febrile illness for as long as one week after aerosol exposures of human populations to F. tularensis .  相似文献   

19.
A Systematic Uncertainty Analysis of an Evaluative Fate and Exposure Model   总被引:7,自引:0,他引:7  
Multimedia fate and exposure models are widely used to regulate the release of toxic chemicals, to set cleanup standards for contaminated sites, and to evaluate emissions in life-cycle assessment. CalTOX, one of these models, is used to calculate the potential dose, an outcome that is combined with the toxicity of the chemical to determine the Human Toxicity Potential (HTP), used to aggregate and compare emissions. The comprehensive assessment of the uncertainty in the potential dose calculation in this article serves to provide the information necessary to evaluate the reliability of decisions based on the HTP A framework for uncertainty analysis in multimedia risk assessment is proposed and evaluated with four types of uncertainty. Parameter uncertainty is assessed through Monte Carlo analysis. The variability in landscape parameters is assessed through a comparison of potential dose calculations for different regions in the United States. Decision rule uncertainty is explored through a comparison of the HTP values under open and closed system boundaries. Model uncertainty is evaluated through two case studies, one using alternative formulations for calculating the plant concentration and the other testing the steady state assumption for wet deposition. This investigation shows that steady state conditions for the removal of chemicals from the atmosphere are not appropriate and result in an underestimate of the potential dose for 25% of the 336 chemicals evaluated.  相似文献   

20.
Li R  Englehardt JD  Li X 《Risk analysis》2012,32(2):345-359
Multivariate probability distributions, such as may be used for mixture dose‐response assessment, are typically highly parameterized and difficult to fit to available data. However, such distributions may be useful in analyzing the large electronic data sets becoming available, such as dose‐response biomarker and genetic information. In this article, a new two‐stage computational approach is introduced for estimating multivariate distributions and addressing parameter uncertainty. The proposed first stage comprises a gradient Markov chain Monte Carlo (GMCMC) technique to find Bayesian posterior mode estimates (PMEs) of parameters, equivalent to maximum likelihood estimates (MLEs) in the absence of subjective information. In the second stage, these estimates are used to initialize a Markov chain Monte Carlo (MCMC) simulation, replacing the conventional burn‐in period to allow convergent simulation of the full joint Bayesian posterior distribution and the corresponding unconditional multivariate distribution (not conditional on uncertain parameter values). When the distribution of parameter uncertainty is such a Bayesian posterior, the unconditional distribution is termed predictive. The method is demonstrated by finding conditional and unconditional versions of the recently proposed emergent dose‐response function (DRF). Results are shown for the five‐parameter common‐mode and seven‐parameter dissimilar‐mode models, based on published data for eight benzene–toluene dose pairs. The common mode conditional DRF is obtained with a 21‐fold reduction in data requirement versus MCMC. Example common‐mode unconditional DRFs are then found using synthetic data, showing a 71% reduction in required data. The approach is further demonstrated for a PCB 126‐PCB 153 mixture. Applicability is analyzed and discussed. Matlab® computer programs are provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号