首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACT

Recently it is observed that the inverse Weibull (IW) distribution can be used quite effectively to analyse lifetime data in one dimension. The main aim of this paper is to define a bivariate inverse Weibull (BIW) distribution so that the marginals have IW distributions. It is observed that the joint probability density function and the joint cumulative distribution function can be expressed in compact forms. Several properties of this distribution such as marginals, conditional distributions and product moments have been discussed. We obtained the maximum likelihood estimates for the unknown parameters of this distribution and their approximate variance– covariance matrix. We perform some simulations to see the performances of the maximum likelihood estimators. One data set has been re-analysed and it is observed that the bivariate IW distribution provides a better fit than the bivariate exponential distribution.  相似文献   

2.
In this paper, we develop the non-informative priors for the inverse Weibull model when the parameters of interest are the scale and the shape parameters. We develop the first-order and the second-order matching priors for both parameters. For the scale parameter, we reveal that the second-order matching prior is not a highest posterior density (HPD) matching prior, does not match the alternative coverage probabilities up to the second order and is not a cumulative distribution function (CDF) matching prior. Also for the shape parameter, we reveal that the second-order matching prior is an HPD matching prior and a CDF matching prior and also matches the alternative coverage probabilities up to the second order. For both parameters, we reveal that the one-at-a-time reference prior is the second-order matching prior, but Jeffreys’ prior is not the first-order and the second-order matching prior. A simulation study is performed to compare the target coverage probabilities and a real example is given.  相似文献   

3.
The present paper describes the Bayes estimators of parameters of inverse Weibull distribution for complete, type I and type II censored samples under general entropy and squared error loss functions. The proposed estimators have been compared on the basis of their simulated risks (average loss over sample space). A real-life data set is used to illustrate the results.  相似文献   

4.
5.
A large number of models have been derived from the two-parameter Weibull distribution including the inverse Weibull (IW) model which is found suitable for modeling the complex failure data set. In this paper, we present the Bayesian inference for the mixture of two IW models. For this purpose, the Bayes estimates of the parameters of the mixture model along with their posterior risks using informative as well as the non-informative prior are obtained. These estimates have been attained considering two cases: (a) when the shape parameter is known and (b) when all parameters are unknown. For the former case, Bayes estimates are obtained under three loss functions while for the latter case only the squared error loss function is used. Simulation study is carried out in order to explore numerical aspects of the proposed Bayes estimators. A real-life data set is also presented for both cases, and parameters obtained under case when shape parameter is known are tested through testing of hypothesis procedure.  相似文献   

6.
Researchers have been developing various extensions and modified forms of the Weibull distribution to enhance its capability for modeling and fitting different data sets. In this note, we investigate the potential usefulness of the new modification to the standard Weibull distribution called odd Weibull distribution in income economic inequality studies. Some mathematical and statistical properties of this model are proposed. We obtain explicit expressions for the first incomplete moment, quantile function, Lorenz and Zenga curves and related inequality indices. In addition to the well-known stochastic order based on Lorenz curve, the stochastic order based on Zenga curve is considered. Since the new generalized Weibull distribution seems to be suitable to model wealth, financial, actuarial and especially income distributions, these findings are fundamental in the understanding of how parameter values are related to inequality. Also, the estimation of parameters by maximum likelihood and moment methods is discussed. Finally, this distribution has been fitted to United States and Austrian income data sets and has been found to fit remarkably well in compare with the other widely used income models.  相似文献   

7.
8.
9.
We provide a uniformly efficient and simple random variate generator for the entire parameter range of the generalized inverse Gaussian distribution. A general algorithm is provided as well that works for all densities that are proportional to a log-concave function φ, even if the normalization constant is not known. It requires only black box access to φ and its derivative.  相似文献   

10.
The beta modified Weibull distribution   总被引:2,自引:0,他引:2  
A five-parameter distribution so-called the beta modified Weibull distribution is defined and studied. The new distribution contains, as special submodels, several important distributions discussed in the literature, such as the generalized modified Weibull, beta Weibull, exponentiated Weibull, beta exponential, modified Weibull and Weibull distributions, among others. The new distribution can be used effectively in the analysis of survival data since it accommodates monotone, unimodal and bathtub-shaped hazard functions. We derive the moments and examine the order statistics and their moments. We propose the method of maximum likelihood for estimating the model parameters and obtain the observed information matrix. A real data set is used to illustrate the importance and flexibility of the new distribution.  相似文献   

11.
The Weibull distribution is one of the most important distributions in reliability. For the first time, we introduce the beta exponentiated Weibull distribution which extends recent models by Lee et al. [Beta-Weibull distribution: some properties and applications to censored data, J. Mod. Appl. Statist. Meth. 6 (2007), pp. 173–186] and Barreto-Souza et al. [The beta generalized exponential distribution, J. Statist. Comput. Simul. 80 (2010), pp. 159–172]. The new distribution is an important competitive model to the Weibull, exponentiated exponential, exponentiated Weibull, beta exponential and beta Weibull distributions since it contains all these models as special cases. We demonstrate that the density of the new distribution can be expressed as a linear combination of Weibull densities. We provide the moments and two closed-form expressions for the moment-generating function. Explicit expressions are derived for the mean deviations, Bonferroni and Lorenz curves, reliability and entropies. The density of the order statistics can also be expressed as a linear combination of Weibull densities. We obtain the moments of the order statistics. The expected information matrix is derived. We define a log-beta exponentiated Weibull regression model to analyse censored data. The estimation of the parameters is approached by the method of maximum likelihood. The usefulness of the new distribution to analyse positive data is illustrated in two real data sets.  相似文献   

12.
The unknown or unobservable risk factors in the survival analysis cause heterogeneity between individuals. Frailty models are used in the survival analysis to account for the unobserved heterogeneity in individual risks to disease and death. To analyze the bivariate data on related survival times, the shared frailty models were suggested. The most common shared frailty model is a model in which frailty act multiplicatively on the hazard function. In this paper, we introduce the shared gamma frailty model and the inverse Gaussian frailty model with the reversed hazard rate. We introduce the Bayesian estimation procedure using Markov chain Monte Carlo (MCMC) technique to estimate the parameters involved in the model. We present a simulation study to compare the true values of the parameters with the estimated values. We also apply the proposed models to the Australian twin data set and a better model is suggested.  相似文献   

13.
The problem of estimation of the parameters of two-parameter inverse Weibull distributions has been considered. We establish existence and uniqueness of the maximum likelihood estimators of the scale and shape parameters. We derive Bayes estimators of the parameters under the entropy loss function. Hierarchical Bayes estimator, equivariant estimator and a class of minimax estimators are derived when shape parameter is known. Ordered Bayes estimators using information about second population are also derived. We investigate the reliability of multi-component stress-strength model using classical and Bayesian approaches. Risk comparison of the classical and Bayes estimators is done using Monte Carlo simulations. Applications of the proposed estimators are shown using real data sets.  相似文献   

14.
In this paper, the maximum likelihood (ML) and Bayes, by using Markov chain Monte Carlo (MCMC), methods are considered to estimate the parameters of three-parameter modified Weibull distribution (MWD(β, τ, λ)) based on a right censored sample of generalized order statistics (gos). Simulation experiments are conducted to demonstrate the efficiency of the proposed methods. Some comparisons are carried out between the ML and Bayes methods by computing the mean squared errors (MSEs), Akaike's information criteria (AIC) and Bayesian information criteria (BIC) of the estimates to illustrate the paper. Three real data sets from Weibull(α, β) distribution are introduced and analyzed using the MWD(β, τ, λ) and also using the Weibull(α, β) distribution. A comparison is carried out between the mentioned models based on the corresponding Kolmogorov–Smirnov (KS) test statistic, {AIC and BIC} to emphasize that the MWD(β, τ, λ) fits the data better than the other distribution. All parameters are estimated based on type-II censored sample, censored upper record values and progressively type-II censored sample which are generated from the real data sets.  相似文献   

15.
ABSTRACT

In this article, a two-parameter generalized inverse Lindley distribution capable of modeling a upside-down bathtub-shaped hazard rate function is introduced. Some statistical properties of proposed distribution are explicitly derived here. The method of maximum likelihood, least square, and maximum product spacings are used for estimating the unknown model parameters and also compared through the simulation study. The approximate confidence intervals, based on a normal and a log-normal approximation, are also computed. Two algorithms are proposed for generating a random sample from the proposed distribution. A real data set is modeled to illustrate its applicability, and it is shown that our distribution fits much better than some other existing inverse distributions.  相似文献   

16.
This article introduces a new generalization of the transmuted exponentiated modified Weibull distribution introduced by Eltehiwy and Ashour in 2013, using Kumaraswamy distribution introduced by Cordeiro and de Castro in 2011. We refer to the new distribution as Kumaraswamy-transmuted exponentiated modified Weibull (Kw-TEMW) distribution. The new model contains 54 lifetime distributions as special cases such as the KumaraswamyWeibull, exponentiated modified Weibull, exponentiated Weibull, exponentiated exponential, transmuted Weibull, Rayleigh, linear failure rate, and exponential distributions, among others. The properties of the new model are discussed and the maximum likelihood estimation is used to evaluate the parameters. Explicit expressions are derived for the moments and examine the order statistics. This model is capable of modeling various shapes of aging and failure criteria.  相似文献   

17.
Abstract

This paper considers the statistical analysis of masked data in a parallel system with inverse Weibull distributed components under type II censoring. Based on Gamma conjugate prior, the Bayesian estimation as well as the hierarchical Bayesian estimation for the parameters and the reliability function of system are obtained by using the Bayesian theory and the hierarchical Bayesian method. Finally, Monte Carlo simulations are provided to compare the performances of the estimates under different masking probabilities and effective sample sizes.  相似文献   

18.
A review is given of the exponentiated Weibull distribution, the first generalization of the two-parameter Weibull distribution to accommodate nonmonotone hazard rates. The properties reviewed include: moments, order statistics, characterizations, generalizations and related distributions, transformations, graphical estimation, maximum likelihood estimation, Bayes estimation, other estimation, discrimination, goodness of fit tests, regression models, applications, multivariate generalizations, and computer software. Some of the results given are new and hitherto unknown. It is hoped that this review could serve as an important reference and encourage developments of further generalizations of the two-parameter Weibull distribution.  相似文献   

19.
Several probability distributions have been proposed in the literature, especially with the aim of obtaining models that are more flexible relative to the behaviors of the density and hazard rate functions. Recently, two generalizations of the Lindley distribution were proposed in the literature: the power Lindley distribution and the inverse Lindley distribution. In this article, a distribution is obtained from these two generalizations and named as inverse power Lindley distribution. Some properties of this distribution and study of the behavior of maximum likelihood estimators are presented and discussed. It is also applied considering two real datasets and compared with the fits obtained for already-known distributions. When applied, the inverse power Lindley distribution was found to be a good alternative for modeling survival data.  相似文献   

20.
Abstract

We introduce a new family of distributions using truncated discrete Linnik distribution. This family is a rich family of distributions which includes many important families of distributions such as Marshall–Olkin family of distributions, family of distributions generated through truncated negative binomial distribution, family of distributions generated through truncated discrete Mittag–Leffler distribution etc. Some properties of the new family of distributions are derived. A particular case of the family, a five parameter generalization of Weibull distribution, namely discrete Linnik Weibull distribution is given special attention. This distribution is a generalization of many distributions, such as extended exponentiated Weibull, exponentiated Weibull, Weibull truncated negative binomial, generalized exponential truncated negative binomial, Marshall-Olkin extended Weibull, Marshall–Olkin generalized exponential, exponential truncated negative binomial, Marshall–Olkin exponential and generalized exponential. The shape properties, moments, median, distribution of order statistics, stochastic ordering and stress–strength properties of the new generalized Weibull distribution are derived. The unknown parameters of the distribution are estimated using maximum likelihood method. The discrete Linnik Weibull distribution is fitted to a survival time data set and it is shown that the distribution is more appropriate than other competitive models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号