首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
In this article, a new composite quantile regression estimation approach is proposed for estimating the parametric part of single-index model. We use local linear composite quantile regression (CQR) for estimating the nonparametric part of single-index model (SIM) when the error distribution is symmetrical. The weighted local linear CQR is proposed for estimating the nonparametric part of SIM when the error distribution is asymmetrical. Moreover, a new variable selection procedure is proposed for SIM. Under some regularity conditions, we establish the large sample properties of the proposed estimators. Simulation studies and a real data analysis are presented to illustrate the behavior of the proposed estimators.  相似文献   

2.
In this article, we study a nonparametric approach regarding a general nonlinear reduced form equation to achieve a better approximation of the optimal instrument. Accordingly, we propose the nonparametric additive instrumental variable estimator (NAIVE) with the adaptive group Lasso. We theoretically demonstrate that the proposed estimator is root-n consistent and asymptotically normal. The adaptive group Lasso helps us select the valid instruments while the dimensionality of potential instrumental variables is allowed to be greater than the sample size. In practice, the degree and knots of B-spline series are selected by minimizing the BIC or EBIC criteria for each nonparametric additive component in the reduced form equation. In Monte Carlo simulations, we show that the NAIVE has the same performance as the linear instrumental variable (IV) estimator for the truly linear reduced form equation. On the other hand, the NAIVE performs much better in terms of bias and mean squared errors compared to other alternative estimators under the high-dimensional nonlinear reduced form equation. We further illustrate our method in an empirical study of international trade and growth. Our findings provide a stronger evidence that international trade has a significant positive effect on economic growth.  相似文献   

3.
The Reversed Hazard Rate (RHR) function is an important measure as a tool in the analysis of the reliability of both natural and man-made systems. In this paper, we present several new estimators of the RHR function using nonparametric techniques. These estimators are obtained by incorporating different binning techniques with fixed design local polynomial regression. We show that these estimators are asymptotically unbiased and consistent and, to determine the bandwidth, we propose two simple yet efficient plug-in bandwidth selection methods for even and odd order local polynomial estimators. Simulated and real life data are subsequently used to evaluate the performances of these estimators.  相似文献   

4.
Maximum pseudolikelihood (MPL) estimators are useful alternatives to maximum likelihood (ML) estimators when likelihood functions are more difficult to manipulate than their marginal and conditional components. Furthermore, MPL estimators subsume a large number of estimation techniques including ML estimators, maximum composite marginal likelihood estimators, and maximum pairwise likelihood estimators. When considering only the estimation of discrete models (on a possibly countably infinite support), we show that a simple finiteness assumption on an entropy-based measure is sufficient for assessing the consistency of the MPL estimator. As a consequence, we demonstrate that the MPL estimator of any discrete model on a bounded support will be consistent. Our result is valid in parametric, semiparametric, and nonparametric settings.  相似文献   

5.
Sometimes, in industrial quality control experiments and destructive stress testing, only values smaller than all previous ones are observed. Here we consider nonparametric quantile estimation, both the ‘sample quantile function’ and kernel-type estimators, from such record-breaking data. For a single record-breaking sample, consistent estimation is not possible except in the extreme tails of the distribution. Hence replication is required, and for m. such independent record-breaking samples the quantile estimators are shown to be strongly consistent and asymptotically normal as m-→∞. Also, for small m, the mean-squared errors, biases and smoothing parameters (for the smoothed estimators) are investigated through computer simulations.  相似文献   

6.
The computation of the renewal function when the distribution function is completely known has received much attention in the literature. However, in many cases the form of the distribution function is unknown and has to be estimated nonparametrically. A nonparametric estimator for the renewal function for complete data was suggested by Frees (1986). In many cases, however, censoring of the lifetime might occur. We shall present parametric and nonparametric estimators of the renewal function based on censored data. In a simulation study we compare the nonparametric estimators with parametric estimators for the Weibull and lognormal distribution. The study suggests that the nonparametric estimator is a viable alternative to the parametric estimators when the lifetime distribution is unknown. Also, the nonparametric estimator is computationally simpler than the parametric estimator.  相似文献   

7.
Liang H  Liu X  Li R  Tsai CL 《Annals of statistics》2010,38(6):3811-3836
In partially linear single-index models, we obtain the semiparametrically efficient profile least-squares estimators of regression coefficients. We also employ the smoothly clipped absolute deviation penalty (SCAD) approach to simultaneously select variables and estimate regression coefficients. We show that the resulting SCAD estimators are consistent and possess the oracle property. Subsequently, we demonstrate that a proposed tuning parameter selector, BIC, identifies the true model consistently. Finally, we develop a linear hypothesis test for the parametric coefficients and a goodness-of-fit test for the nonparametric component, respectively. Monte Carlo studies are also presented.  相似文献   

8.
Abstract

It is known that due to the existence of the nonparametric component, the usual estimators for the parametric component or its function in partially linear regression models are biased. Sometimes this bias is severe. To reduce the bias, we propose two jackknife estimators and compare them with the naive estimator. All three estimators are shown to be asymptotically equivalent and asymptotically normally distributed under some regularity conditions. However, through simulation we demonstrate that the jackknife estimators perform better than the naive estimator in terms of bias when the sample size is small to moderate. To make our results more useful, we also construct consistent estimators of the asymptotic variance, which are robust against heterogeneity of the error variances.  相似文献   

9.
The derivation of a new class of nonparametric density function estimators, the so-called bootstrap functional estimators (BFE's), is given. These estimators are shown to be strongly consistent under fairly nonrestrictive conditions. Some small-sample properties are discussed and a number of graphs are presented.  相似文献   

10.
For nonparametric regression models with fixed and random design, two classes of estimators for the error variance have been introduced: second sample moments based on residuals from a nonparametric fit, and difference-based estimators. The former are asymptotically optimal but require estimating the regression function; the latter are simple but have larger asymptotic variance. For nonparametric regression models with random covariates, we introduce a class of estimators for the error variance that are related to difference-based estimators: covariate-matched U-statistics. We give conditions on the random weights involved that lead to asymptotically optimal estimators of the error variance. Our explicit construction of the weights uses a kernel estimator for the covariate density.  相似文献   

11.
In an attempt to identify similarities between methods for estimating a mean function with different types of response or observation processes, we explore a general theoretical framework for nonparametric estimation of the mean function of a response process subject to incomplete observations. Special cases of the response process include quantitative responses and discrete state processes such as survival processes, counting processes and alternating binary processes. The incomplete data are assumed to arise from a general response-independent observation process, which includes right- censoring, interval censoring, periodic observation, and mixtures of these as special cases. We explore two criteria for defining nonparametric estimators, one based on the sample mean of available data and the other inspired by the construction of Kaplan-Meier (or product-limit) estimator [J. Am. Statist. Assoc. 53 (1958) 457] for right-censored survival data. We show that under regularity conditions the estimated mean functions resulting from both criteria are consistent and converge weakly to Gaussian processes, and provide consistent estimators of their covariance functions. We then evaluate these general criteria for specific responses and observation processes, and show how they lead to familiar estimators for some response and observation processes and new estimators for others. We illustrate the latter with data from an recently completed AIDS clinical trial.  相似文献   

12.
We develop and study in the framework of Pareto-type distributions a class of nonparametric kernel estimators for the conditional second order tail parameter. The estimators are obtained by local estimation of the conditional second order parameter using a moving window approach. Asymptotic normality of the proposed class of kernel estimators is proven under some suitable conditions on the kernel function and the conditional tail quantile function. The nonparametric estimators for the second order parameter are subsequently used to obtain a class of bias-corrected kernel estimators for the conditional tail index. In particular it is shown how for a given kernel function one obtains a bias-corrected kernel function, and that replacing the second order parameter in the latter with a consistent estimator does not change the limiting distribution of the bias-corrected estimator for the conditional tail index. The finite sample behavior of some specific estimators is illustrated with a simulation experiment. The developed methodology is also illustrated on fire insurance claim data.  相似文献   

13.
In this paper, we propose nonparametric kernel estimators of the semivariogram, under the assumption of isotropy. At first, a symmetric kernel is considered in order to construct a consistent estimator, so that the selection of the bandwidth parameter is treated via the MSE or the MISE criteria. Next, the use of a boundary kernel will be suggested in order to obtain satisfactory estimates near the semivariogram endpoint. In all cases, an adaptation of Shapiro and Botha's fit is proposed to produce valid semivariogram estimators. Finally, we describe a numerical study carried out to illustrate the performance of the kernel estimators.  相似文献   

14.
We present a sharp uniform-in-bandwidth functional limit law for the increments of the Kaplan–Meier empirical process based upon right-censored random data. We apply this result to obtain limit laws for nonparametric kernel estimators of local functionals of lifetime densities, which are uniform with respect to the choices of bandwidth and kernel. These are established in the framework of convergence in probability, and we allow the bandwidth to vary within the complete range for which the estimators are consistent. We provide explicit values for the asymptotic limiting constant for the sup-norm of the estimation random error.  相似文献   

15.
In recent years, there has been an increased interest in combining probability and nonprobability samples. Nonprobability sample are cheaper and quicker to conduct but the resulting estimators are vulnerable to bias as the participation probabilities are unknown. To adjust for the potential bias, estimation procedures based on parametric or nonparametric models have been discussed in the literature. However, the validity of the resulting estimators relies heavily on the validity of the underlying models. Also, nonparametric approaches may suffer from the curse of dimensionality and poor efficiency. We propose a data integration approach by combining multiple outcome regression models and propensity score models. The proposed approach can be used for estimating general parameters including totals, means, distribution functions, and percentiles. The resulting estimators are multiply robust in the sense that they remain consistent if all but one model are misspecified. The asymptotic properties of point and variance estimators are established. The results from a simulation study show the benefits of the proposed method in terms of bias and efficiency. Finally, we apply the proposed method using data from the Korea National Health and Nutrition Examination Survey and data from the National Health Insurance Sharing Services.  相似文献   

16.
Summary.  We consider the problem of estimating the noise variance in homoscedastic nonparametric regression models. For low dimensional covariates t  ∈  R d ,  d =1, 2, difference-based estimators have been investigated in a series of papers. For a given length of such an estimator, difference schemes which minimize the asymptotic mean-squared error can be computed for d =1 and d =2. However, from numerical studies it is known that for finite sample sizes the performance of these estimators may be deficient owing to a large finite sample bias. We provide theoretical support for these findings. In particular, we show that with increasing dimension d this becomes more drastic. If d 4, these estimators even fail to be consistent. A different class of estimators is discussed which allow better control of the bias and remain consistent when d 4. These estimators are compared numerically with kernel-type estimators (which are asymptotically efficient), and some guidance is given about when their use becomes necessary.  相似文献   

17.
Quality adjusted survival has been increasingly advocated in clinical trials to be assessed as a synthesis of survival and quality of life. We investigate nonparametric estimation of its expectation for a general multistate process with incomplete follow-up data. Upon establishing a representation of expected quality adjusted survival through marginal distributions of a set of defined events, we propose two estimators for expected quality adjusted survival. Expressed as functions of Nelson-Aalen estimators, the two estimators are strongly consistent and asymptotically normal. We derive their asymptotic variances and propose sample-based variance estimates, along with evaluation of asymptotic relative efficiency. Monte Carlo studies show that these estimation procedures perform well for practical sample sizes. We illustrate the methods using data from a national, multicenter AIDS clinical trial.  相似文献   

18.
In this paper we consider nonparametric estimation of transition probabilities for multi-state models. Specifically, we focus on the illness-death or disability model. The main novelty of the proposed estimators is that they do not rely on the Markov assumption, typically assumed to hold in a multi-state model. We investigate the asymptotic properties of the introduced estimators, such as their consistency and their convergence to a normal law. Simulations demonstrate that the new estimators may outperform Aalen–Johansen estimators (the classical nonparametric tool for estimating the transition probabilities) in non-Markov situation. An illustration through real data analysis is included.  相似文献   

19.
This paper develops a varying-coefficient approach to the estimation and testing of regression quantiles under randomly truncated data. In order to handle the truncated data, the random weights are introduced and the weighted quantile regression (WQR) estimators for nonparametric functions are proposed. To achieve nice efficiency properties, we further develop a weighted composite quantile regression (WCQR) estimation method for nonparametric functions in varying-coefficient models. The asymptotic properties both for the proposed WQR and WCQR estimators are established. In addition, we propose a novel bootstrap-based test procedure to test whether the nonparametric functions in varying-coefficient quantile models can be specified by some function forms. The performance of the proposed estimators and test procedure are investigated through simulation studies and a real data example.  相似文献   

20.
In this paper, we consider the estimation of partially linear additive quantile regression models where the conditional quantile function comprises a linear parametric component and a nonparametric additive component. We propose a two-step estimation approach: in the first step, we approximate the conditional quantile function using a series estimation method. In the second step, the nonparametric additive component is recovered using either a local polynomial estimator or a weighted Nadaraya–Watson estimator. Both consistency and asymptotic normality of the proposed estimators are established. Particularly, we show that the first-stage estimator for the finite-dimensional parameters attains the semiparametric efficiency bound under homoskedasticity, and that the second-stage estimators for the nonparametric additive component have an oracle efficiency property. Monte Carlo experiments are conducted to assess the finite sample performance of the proposed estimators. An application to a real data set is also illustrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号