首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
《Risk analysis》2018,38(6):1258-1278
Although individual behavior plays a major role in community flood risk, traditional flood risk models generally do not capture information on how community policies and individual decisions impact the evolution of flood risk over time. The purpose of this study is to improve the understanding of the temporal aspects of flood risk through a combined analysis of the behavioral, engineering, and physical hazard aspects of flood risk. Additionally, the study aims to develop a new modeling approach for integrating behavior, policy, flood hazards, and engineering interventions. An agent‐based model (ABM) is used to analyze the influence of flood protection measures, individual behavior, and the occurrence of floods and near‐miss flood events on community flood risk. The ABM focuses on the following decisions and behaviors: dissemination of flood management information, installation of community flood protection, elevation of household mechanical equipment, and elevation of homes. The approach is place based, with a case study area in Fargo, North Dakota, but is focused on generalizable insights. Generally, community mitigation results in reduced future damage, and individual action, including mitigation and movement into and out of high‐risk areas, can have a significant influence on community flood risk. The results of this study provide useful insights into the interplay between individual and community actions and how it affects the evolution of flood risk. This study lends insight into priorities for future work, including the development of more in‐depth behavioral and decision rules at the individual and community level.  相似文献   

2.
Recently Kasperson et al.(6) have proposed a conceptual framework, “The Social Amplification of Risk,” as a beginning step in developing a comprehensive theory of public experience of risk. A central goal of their effort is to systematically link technical assessments of risk with the growing findings from social scientific research. A key and growing domain of public risk experience is “desired” risk, but this is virtually neglected in the framework. This paper evaluates the scope of the “Social Amplification of Risk Framework,” asking whether it is applicable to desired risks, such as risk recreation (hang gliding, mountain climbing, and so forth). The analysis is supportive of the framework's applicability to the domain of desired risk.  相似文献   

3.
Security risk management is essential for ensuring effective airport operations. This article introduces AbSRiM, a novel agent‐based modeling and simulation approach to perform security risk management for airport operations that uses formal sociotechnical models that include temporal and spatial aspects. The approach contains four main steps: scope selection, agent‐based model definition, risk assessment, and risk mitigation. The approach is based on traditional security risk management methodologies, but uses agent‐based modeling and Monte Carlo simulation at its core. Agent‐based modeling is used to model threat scenarios, and Monte Carlo simulations are then performed with this model to estimate security risks. The use of the AbSRiM approach is demonstrated with an illustrative case study. This case study includes a threat scenario in which an adversary attacks an airport terminal with an improvised explosive device. The approach provides a promising way to include important elements, such as human aspects and spatiotemporal aspects, in the assessment of risk. More research is still needed to better identify the strengths and weaknesses of the AbSRiM approach in different case studies, but results demonstrate the feasibility of the approach and its potential.  相似文献   

4.
Place, Culture, and the Social Amplification of Risk   总被引:1,自引:0,他引:1  
This article investigates the role of culture in the social production of risks and risk communication surrounding industrial development in a region located at a rural-urban interface. A case study examined a public consultation that was undertaken to inform local residents about an eco-industrial development proposal being planned near Edmonton, Alberta, Canada. The research employed the social amplification of risk framework (SARF) to examine the relationships among culture, place, and socially constructed risk. A total of 44 in-depth, semi-structured interviews were carried out with 33 landowners (farmers, acreage owners), public officials (municipal politicians, administrators), journalists, and industry representatives. Analysis revealed that risk communication occurred in relation to situated experiences of place that were based on conflicting cultural worldviews. The research shows that place is a useful component of the SARF, providing a spatial explanation for why some people amplify, and others attenuate, risks in locally contentious environmental debates.  相似文献   

5.
In the event of contamination of a water distribution system, decisions must be made to mitigate the impact of the contamination and to protect public health. Making threat management decisions while a contaminant spreads through the network is a dynamic and interactive process. Response actions taken by the utility managers and water consumption choices made by the consumers will affect the hydraulics, and thus the spread of the contaminant plume, in the network. A modeling framework that allows the simulation of a contamination event under the effects of actions taken by utility managers and consumers will be a useful tool for the analysis of alternative threat mitigation and management strategies. This article presents a multiagent modeling framework that combines agent‐based, mechanistic, and dynamic methods. Agents select actions based on a set of rules that represent an individual's autonomy, goal‐based desires, and reaction to the environment and the actions of other agents. Consumer behaviors including ingestion, mobility, reduction of water demands, and word‐of‐mouth communication are simulated. Management strategies are evaluated, including opening hydrants to flush the contaminant and broadcasts. As actions taken by consumer agents and utility operators affect demands and flows in the system, the mechanistic model is updated. Management strategies are evaluated based on the exposure of the population to the contaminant. The framework is designed to consider the typical issues involved in water distribution threat management and provides valuable analysis of threat containment strategies for water distribution system contamination events.  相似文献   

6.
《Risk analysis》2018,38(8):1585-1600
Historical data analysis shows that escalation accidents, so‐called domino effects, have an important role in disastrous accidents in the chemical and process industries. In this study, an agent‐based modeling and simulation approach is proposed to study the propagation of domino effects in the chemical and process industries. Different from the analytical or Monte Carlo simulation approaches, which normally study the domino effect at probabilistic network levels, the agent‐based modeling technique explains the domino effects from a bottom‐up perspective. In this approach, the installations involved in a domino effect are modeled as agents whereas the interactions among the installations (e.g., by means of heat radiation) are modeled via the basic rules of the agents. Application of the developed model to several case studies demonstrates the ability of the model not only in modeling higher‐level domino effects and synergistic effects but also in accounting for temporal dependencies. The model can readily be applied to large‐scale complicated cases.  相似文献   

7.
Following the detection of bovine spongiform encephalopathy (BSE) in Canada, and subsequently in the United States, confidence in the safety of beef products remained high. Consumers actually increased their consumption of beef slightly after the news of an increased risk from mad cow disease, which has been interpreted as public support for beef farmers and confidence in government regulators. The Canadian public showed a markedly different reaction to the news of domestic BSE than the furious and panicked responses observed in the United Kingdom, Germany, and Japan. Using the social amplification of risk framework, we show that, while other countries displayed social amplification of risk, Canada experienced a social attenuation of risk. The attenuated reaction in Canada toward mad cow disease and increased human health risks from variant Creutzfeldt-Jakob disease (vCJD) was due to the social context at the time when BSE was discovered domestically. Mortality, morbidity, and psychosocial impacts resulting from other major events such as severe acute respiratory syndrome (SARS), West Nile virus (WNV), and the U.S.-Iraq war made the theoretical risks of BSE and vCJD a lower priority, reducing its concern as a risk issue.  相似文献   

8.
In this article, an agent‐based framework to quantify the seismic resilience of an electric power supply system (EPSS) and the community it serves is presented. Within the framework, the loss and restoration of the EPSS power generation and delivery capacity and of the power demand from the served community are used to assess the electric power deficit during the damage absorption and recovery processes. Damage to the components of the EPSS and of the community‐built environment is evaluated using the seismic fragility functions. The restoration of the community electric power demand is evaluated using the seismic recovery functions. However, the postearthquake EPSS recovery process is modeled using an agent‐based model with two agents, the EPSS Operator and the Community Administrator. The resilience of the EPSS–community system is quantified using direct, EPSS‐related, societal, and community‐related indicators. Parametric studies are carried out to quantify the influence of different seismic hazard scenarios, agent characteristics, and power dispatch strategies on the EPSS–community seismic resilience. The use of the agent‐based modeling framework enabled a rational formulation of the postearthquake recovery phase and highlighted the interaction between the EPSS and the community in the recovery process not quantified in resilience models developed to date. Furthermore, it shows that the resilience of different community sectors can be enhanced by different power dispatch strategies. The proposed agent‐based EPSS–community system resilience quantification framework can be used to develop better community and infrastructure system risk governance policies.  相似文献   

9.
基于改进型技术接受模型的物联网服务采纳实证研究   总被引:1,自引:0,他引:1  
物联网技术的应用已经大量出现在我们的日常生活和企业经济活动中,但仍然局限在相对独立的范围内,网络互连互通和信息共享依然未能实现。本文从行为科学的视角,按照技术接受模型的研究方法,通过问卷调查和结构方程统计分析,对物联网服务采纳进行了实证研究。结果表明:物联网发展的瓶颈依然是核心技术和网络互连标准问题,给消费者提供有用易用的产品和服务是推进其应用的关键,而消费者对物联网环境下的隐私保护和信息安全现已有所关注。  相似文献   

10.
Companies throughout industry are interested in retaining existing customers, because customers' continuous consumption of products and services is critical to the long‐term value propositions of most organizations. Thus, decision‐making strategies that promote continuous use and customer retention are of research interest, both theoretically and practically. In the present research, we investigate one important area of continuous usage, that of Web site use. In particular, we use several theories of commitment to understand how an individual's decision to continue to use a Web site is influenced by his or her commitment toward that Web site and the vendor that supports it. Results derived from data collected from 335 users of a variety of Web sites indicated that affective commitment, calculative commitment, quality of alternatives, and trust were significantly associated with an individual's behavioral intention to continue to use a Web site. Implications for customer retention and decision‐making strategies are discussed.  相似文献   

11.
Point source pollution is one of the main threats to regional environmental health. Based on a water quality model, a methodology to assess the regional risk of point source pollution is proposed. The assessment procedure includes five parts: (1) identifying risk source units and estimating source emissions using Monte Carlo algorithms; (2) observing hydrological and water quality data of the assessed area, and evaluating the selected water quality model; (3) screening out the assessment endpoints and analyzing receptor vulnerability with the Choquet fuzzy integral algorithm; (4) using the water quality model introduced in the second step to predict pollutant concentrations for various source emission scenarios and analyzing hazards of risk sources; and finally, (5) using the source hazard values and receptor vulnerability scores to estimate overall regional risk. The proposed method, based on the Water Quality Analysis Simulation Program (WASP), was applied in the region of the Taipu River, which is in the Taihu Basin, China. Results of source hazard and receptor vulnerability analysis allowed us to describe aquatic ecological, human health, and socioeconomic risks individually, and also integrated risks in the Taipu region, from a series of risk curves. Risk contributions of sources to receptors were ranked, and the spatial distribution of risk levels was presented. By changing the input conditions, we were able to estimate risks for a range of scenarios. Thus, the proposed procedure may also be used by decisionmakers for long‐term dynamic risk prediction.  相似文献   

12.
This paper investigates the long‐term stock price effects and equity risk effects of supply chain disruptions based on a sample of 827 disruption announcements made during 1989–2000. Stock price effects are examined starting one year before through two years after the disruption announcement date. Over this time period the average abnormal stock returns of firms that experienced disruptions is nearly –40%. Much of this underperformance is observed in the year before the announcement, the day of the announcement, and the year after the announcement. Furthermore, the evidence indicates that firms do not quickly recover from the negative effects of disruptions. The equity risk of the firm also increases significantly around the announcement date. The equity risk in the year after the announcement is 13.50% higher when compared to the equity risk in the year before the announcement.  相似文献   

13.
Land subsidence risk assessment (LSRA) is a multi‐attribute decision analysis (MADA) problem and is often characterized by both quantitative and qualitative attributes with various types of uncertainty. Therefore, the problem needs to be modeled and analyzed using methods that can handle uncertainty. In this article, we propose an integrated assessment model based on the evidential reasoning (ER) algorithm and fuzzy set theory. The assessment model is structured as a hierarchical framework that regards land subsidence risk as a composite of two key factors: hazard and vulnerability. These factors can be described by a set of basic indicators defined by assessment grades with attributes for transforming both numerical data and subjective judgments into a belief structure. The factor‐level attributes of hazard and vulnerability are combined using the ER algorithm, which is based on the information from a belief structure calculated by the Dempster‐Shafer (D‐S) theory, and a distributed fuzzy belief structure calculated by fuzzy set theory. The results from the combined algorithms yield distributed assessment grade matrices. The application of the model to the Xixi‐Chengnan area, China, illustrates its usefulness and validity for LSRA. The model utilizes a combination of all types of evidence, including all assessment information—quantitative or qualitative, complete or incomplete, and precise or imprecise—to provide assessment grades that define risk assessment on the basis of hazard and vulnerability. The results will enable risk managers to apply different risk prevention measures and mitigation planning based on the calculated risk states.  相似文献   

14.
In the nuclear power industry, Level 3 probabilistic risk assessment (PRA) is used to estimate damage to public health and the environment if a severe accident leads to large radiological release. Current Level 3 PRA does not have an explicit inclusion of social factors and, therefore, it is not possible to perform importance ranking of social factors for risk‐informing emergency preparedness, planning, and response (EPPR). This article offers a methodology for adapting the concept of social vulnerability, commonly used in natural hazard research, in the context of a severe nuclear power plant accident. The methodology has four steps: (1) calculating a hazard‐independent social vulnerability index for the local population; (2) developing a location‐specific representation of the maximum radiological hazard estimated from current Level 3 PRA, in a geographic information system (GIS) environment; (3) developing a GIS‐based socio‐technical risk map by combining the social vulnerability index and the location‐specific radiological hazard; and (4) conducting a risk importance measure analysis to rank the criticality of social factors based on their contribution to the socio‐technical risk. The methodology is applied using results from the 2012 Surry Power Station state‐of‐the‐art reactor consequence analysis. A radiological hazard model is generated from MELCOR accident consequence code system, translated into a GIS environment, and combined with the Center for Disease Control social vulnerability index (SVI). This research creates an opportunity to explicitly consider and rank the criticality of location‐specific SVI themes based on their influence on risk, providing input for EPPR.  相似文献   

15.
On the basis of the combination of the well‐known knapsack problem and a widely used risk management technique in organizations (that is, the risk matrix), an approach was developed to carry out a cost‐benefits analysis to efficiently take prevention investment decisions. Using the knapsack problem as a model and combining it with a well‐known technique to solve this problem, bundles of prevention measures are prioritized based on their costs and benefits within a predefined prevention budget. Those bundles showing the highest efficiencies, and within a given budget, are identified from a wide variety of possible alternatives. Hence, the approach allows for an optimal allocation of safety resources, does not require any highly specialized information, and can therefore easily be applied by any organization using the risk matrix as a risk ranking tool.  相似文献   

16.
This article proposes a novel mathematical optimization framework for the identification of the vulnerabilities of electric power infrastructure systems (which is a paramount example of critical infrastructure) due to natural hazards. In this framework, the potential impacts of a specific natural hazard on an infrastructure are first evaluated in terms of failure and recovery probabilities of system components. Then, these are fed into a bi‐level attacker–defender interdiction model to determine the critical components whose failures lead to the largest system functionality loss. The proposed framework bridges the gap between the difficulties of accurately predicting the hazard information in classical probability‐based analyses and the over conservatism of the pure attacker–defender interdiction models. Mathematically, the proposed model configures a bi‐level max‐min mixed integer linear programming (MILP) that is challenging to solve. For its solution, the problem is casted into an equivalent one‐level MILP that can be solved by efficient global solvers. The approach is applied to a case study concerning the vulnerability identification of the georeferenced RTS24 test system under simulated wind storms. The numerical results demonstrate the effectiveness of the proposed framework for identifying critical locations under multiple hazard events and, thus, for providing a useful tool to help decisionmakers in making more‐informed prehazard preparation decisions.  相似文献   

17.
A challenge for large‐scale environmental health investigations such as the National Children's Study (NCS), is characterizing exposures to multiple, co‐occurring chemical agents with varying spatiotemporal concentrations and consequences modulated by biochemical, physiological, behavioral, socioeconomic, and environmental factors. Such investigations can benefit from systematic retrieval, analysis, and integration of diverse extant information on both contaminant patterns and exposure‐relevant factors. This requires development, evaluation, and deployment of informatics methods that support flexible access and analysis of multiattribute data across multiple spatiotemporal scales. A new “Tiered Exposure Ranking” (TiER) framework, developed to support various aspects of risk‐relevant exposure characterization, is described here, with examples demonstrating its application to the NCS. TiER utilizes advances in informatics computational methods, extant database content and availability, and integrative environmental/exposure/biological modeling to support both “discovery‐driven” and “hypothesis‐driven” analyses. “Tier 1” applications focus on “exposomic” pattern recognition for extracting information from multidimensional data sets, whereas second and higher tier applications utilize mechanistic models to develop risk‐relevant exposure metrics for populations and individuals. In this article, “tier 1” applications of TiER explore identification of potentially causative associations among risk factors, for prioritizing further studies, by considering publicly available demographic/socioeconomic, behavioral, and environmental data in relation to two health endpoints (preterm birth and low birth weight). A “tier 2” application develops estimates of pollutant mixture inhalation exposure indices for NCS counties, formulated to support risk characterization for these endpoints. Applications of TiER demonstrate the feasibility of developing risk‐relevant exposure characterizations for pollutants using extant environmental and demographic/socioeconomic data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号