首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 149 毫秒
1.
This article presents a flood risk analysis model that considers the spatially heterogeneous nature of flood events. The basic concept of this approach is to generate a large sample of flood events that can be regarded as temporal extrapolation of flood events. These are combined with cumulative flood impact indicators, such as building damages, to finally derive time series of damages for risk estimation. Therefore, a multivariate modeling procedure that is able to take into account the spatial characteristics of flooding, the regionalization method top‐kriging, and three different impact indicators are combined in a model chain. Eventually, the expected annual flood impact (e.g., expected annual damages) and the flood impact associated with a low probability of occurrence are determined for a study area. The risk model has the potential to augment the understanding of flood risk in a region and thereby contribute to enhanced risk management of, for example, risk analysts and policymakers or insurance companies. The modeling framework was successfully applied in a proof‐of‐concept exercise in Vorarlberg (Austria). The results of the case study show that risk analysis has to be based on spatially heterogeneous flood events in order to estimate flood risk adequately.  相似文献   

2.
In this article, we propose an integrated direct and indirect flood risk model for small‐ and large‐scale flood events, allowing for dynamic modeling of total economic losses from a flood event to a full economic recovery. A novel approach is taken that translates direct losses of both capital and labor into production losses using the Cobb‐Douglas production function, aiming at improved consistency in loss accounting. The recovery of the economy is modeled using a hybrid input‐output model and applied to the port region of Rotterdam, using six different flood events (1/10 up to 1/10,000). This procedure allows gaining a better insight regarding the consequences of both high‐ and low‐probability floods. The results show that in terms of expected annual damage, direct losses remain more substantial relative to the indirect losses (approximately 50% larger), but for low‐probability events the indirect losses outweigh the direct losses. Furthermore, we explored parameter uncertainty using a global sensitivity analysis, and varied critical assumptions in the modeling framework related to, among others, flood duration and labor recovery, using a scenario approach. Our findings have two important implications for disaster modelers and practitioners. First, high‐probability events are qualitatively different from low‐probability events in terms of the scale of damages and full recovery period. Second, there are substantial differences in parameter influence between high‐probability and low‐probability flood modeling. These findings suggest that a detailed approach is required when assessing the flood risk for a specific region.  相似文献   

3.
Scour (localized erosion by water) is an important risk to bridges, and hence many infrastructure networks, around the world. In Britain, scour has caused the failure of railway bridges crossing rivers in more than 50 flood events. These events have been investigated in detail, providing a data set with which we develop and test a model to quantify scour risk. The risk analysis is formulated in terms of a generic, transferrable infrastructure network risk model. For some bridge failures, the severity of the causative flood was recorded or can be reconstructed. These data are combined with the background failure rate, and records of bridges that have not failed, to construct fragility curves that quantify the failure probability conditional on the severity of a flood event. The fragility curves generated are to some extent sensitive to the way in which these data are incorporated into the statistical analysis. The new fragility analysis is tested using flood events simulated from a spatial joint probability model for extreme river flows for all river gauging sites in Britain. The combined models appear robust in comparison with historical observations of the expected number of bridge failures in a flood event. The analysis is used to estimate the probability of single or multiple bridge failures in Britain's rail network. Combined with a model for passenger journey disruption in the event of bridge failure, we calculate a system‐wide estimate for the risk of scour failures in terms of passenger journey disruptions and associated economic costs.  相似文献   

4.
This article focuses on conceptual and methodological developments allowing the integration of physical and social dynamics leading to model forecasts of circumstance‐specific human losses during a flash flood. To reach this objective, a random forest classifier is applied to assess the likelihood of fatality occurrence for a given circumstance as a function of representative indicators. Here, vehicle‐related circumstance is chosen as the literature indicates that most fatalities from flash flooding fall in this category. A database of flash flood events, with and without human losses from 2001 to 2011 in the United States, is supplemented with other variables describing the storm event, the spatial distribution of the sensitive characteristics of the exposed population, and built environment at the county level. The catastrophic flash floods of May 2015 in the states of Texas and Oklahoma are used as a case study to map the dynamics of the estimated probabilistic human risk on a daily scale. The results indicate the importance of time‐ and space‐dependent human vulnerability and risk assessment for short‐fuse flood events. The need for more systematic human impact data collection is also highlighted to advance impact‐based predictive models for flash flood casualties using machine‐learning approaches in the future.  相似文献   

5.
Losses due to natural hazard events can be extraordinarily high and difficult to cope with. Therefore, there is considerable interest to estimate the potential impact of current and future extreme events at all scales in as much detail as possible. As hazards typically spread over wider areas, risk assessment must take into account interrelations between regions. Neglecting such interdependencies can lead to a severe underestimation of potential losses, especially for extreme events. This underestimation of extreme risk can lead to the failure of riskmanagement strategies when they are most needed, namely, in times of unprecedented events. In this article, we suggest a methodology to incorporate such interdependencies in risk via the use of copulas. We demonstrate that by coupling losses, dependencies can be incorporated in risk analysis, avoiding the underestimation of risk. Based on maximum discharge data of river basins and stream networks, we present and discuss different ways to couple loss distributions of basins while explicitly incorporating tail dependencies. We distinguish between coupling methods that require river structure data for the analysis and those that do not. For the later approach we propose a minimax algorithm to choose coupled basin pairs so that the underestimation of risk is avoided and the use of river structure data is not needed. The proposed methodology is especially useful for large‐scale analysis and we motivate and apply our method using the case of Romania. The approach can be easily extended to other countries and natural hazards.  相似文献   

6.
The Impact of Climate Variability on Flood Risk in Poland   总被引:2,自引:0,他引:2  
This article examines the role of climatic and hydrological variability in assessing the cumulative risk of flood events in Poland over a T-year period. In a broad sense flood-risk estimation combines a frequency analysis of extreme hydrological phenomena with an evaluation of flood-induced damages. The damage from floods depends on the critical values of the river discharges. The probabilistic flood analysis usually includes an estimation of the expected annual probability of the critical discharge Qcr being exceeded and the equivalent long-term risk of it being exceeded over the next T years. If, however, the process is nonstationary, the T-year risk of flood damage may depend importantly on the variation of hydrological processes. As a possible explanation for the variations observed in snowmelt-induced floods in Polish rivers, this article investigates the possible impact of the North Atlantic Oscillation (NAO) on surface air temperature T and precipitation P. The spatial distribution of the correlation coefficients between NAO and T, as well as NAO and P, show very significant differences in the NAO impact on meteorological variables in various parts of Europe. To assess the implications of NAO variations on spring flood discharges, a simple model of Snow Cover Water Equivalent (SCWE) was applied to selected Polish river catchments. The conclusion of this analysis is that the yearly maximum of SCWE values significantly decreases with increasing NAO. This leads to a temporal redistribution of winter and spring runoff. The question of spring flood characteristics being stationary or nonstationary may therefore be linked with stochastic properties of the NAO index time series.  相似文献   

7.
Recent catastrophic losses because of floods require developing resilient approaches to flood risk protection. This article assesses how diversification of a system of coastal protections might decrease the probabilities of extreme flood losses. The study compares the performance of portfolios each consisting of four types of flood protection assets in a large region of dike rings. A parametric analysis suggests conditions in which diversifications of the types of included flood protection assets decrease extreme flood losses. Increased return periods of extreme losses are associated with portfolios where the asset types have low correlations of economic risk. The effort highlights the importance of understanding correlations across asset types in planning for large‐scale flood protection. It allows explicit integration of climate change scenarios in developing flood mitigation strategy.  相似文献   

8.
Risk of Extreme Events Under Nonstationary Conditions   总被引:5,自引:0,他引:5  
The concept of the return period is widely used in the analysis of the risk of extreme events and in engineering design. For example, a levee can be designed to protect against the 100-year flood, the flood which on average occurs once in 100 years. Use of the return period typically assumes that the probability of occurrence of an extreme event in the current or any future year is the same. However, there is evidence that potential climate change may affect the probabilities of some extreme events such as floods and droughts. In turn, this would affect the level of protection provided by the current infrastructure. For an engineering project, the risk of an extreme event in a future year could greatly exceed the average annual risk over the design life of the project. An equivalent definition of the return period under stationary conditions is the expected waiting time before failure. This paper examines how this definition can be adapted to nonstationary conditions. Designers of flood control projects should be aware that alternative definitions of the return period imply different risk under nonstationary conditions. The statistics of extremes and extreme value distributions are useful to examine extreme event risk. This paper uses a Gumbel Type I distribution to model the probability of failure under nonstationary conditions. The probability of an extreme event under nonstationary conditions depends on the rate of change of the parameters of the underlying distribution.  相似文献   

9.
The increased frequency of extreme events in recent years highlights the emerging need for the development of methods that could contribute to the mitigation of the impact of such events on critical infrastructures, as well as boost their resilience against them. This article proposes an online spatial risk analysis capable of providing an indication of the evolving risk of power systems regions subject to extreme events. A Severity Risk Index (SRI) with the support of real‐time monitoring assesses the impact of the extreme events on the power system resilience, with application to the effect of windstorms on transmission networks. The index considers the spatial and temporal evolution of the extreme event, system operating conditions, and the degraded system performance during the event. SRI is based on probabilistic risk by condensing the probability and impact of possible failure scenarios while the event is spatially moving across a power system. Due to the large number of possible failures during an extreme event, a scenario generation and reduction algorithm is applied in order to reduce the computation time. SRI provides the operator with a probabilistic assessment that could lead to effective resilience‐based decisions for risk mitigation. The IEEE 24‐bus Reliability Test System has been used to demonstrate the effectiveness of the proposed online risk analysis, which was embedded in a sequential Monte Carlo simulation for capturing the spatiotemporal effects of extreme events and evaluating the effectiveness of the proposed method.  相似文献   

10.
Natural hazards, such as major flood events, are occurring with increasing frequency and inflicting increasing levels of financial damages upon affected communities. The experience of such major flood events has brought about a significant change in attitudes to flood‐risk management, with a shift away from built engineering solutions alone towards a more multifaceted approach. Europe's experience with damaging flood episodes provided the impetus for the introduction of the European Floods Directive, requiring the establishment of flood‐risk management plans at the river‐basin scale. The effectiveness of such plans, focusing on prevention, protection, and preparedness, is dependent on adequate flood awareness and preparedness, and this is related to perception of flood risk. This is an important factor in the design and assessment of flood‐risk management. Whilst there is a modern body of literature exploring flood perception issues, there have been few examples that explore its spatial manifestations. Previous literature has examined perceived and real distance to a hazard source (such as a river, nuclear facility, landfill, or incinerator, etc.), whereas this article advances the literature by including an objectively assessed measure of distance to a perceived flood zone, using a cognitive mapping methodology. The article finds that distance to the perceived flood zone (perceived flood exposure) is a crucial factor in determining flood‐risk perception, both the cognitive and affective components. Furthermore, we find an interesting phenomenon of misperception among respondents. The article concludes by discussing the implications for flood‐risk management.  相似文献   

11.
Regional flood risk caused by intensive rainfall under extreme climate conditions has increasingly attracted global attention. Mapping and evaluation of flood hazard are vital parts in flood risk assessment. This study develops an integrated framework for estimating spatial likelihood of flood hazard by coupling weighted naïve Bayes (WNB), geographic information system, and remote sensing. The north part of Fitzroy River Basin in Queensland, Australia, was selected as a case study site. The environmental indices, including extreme rainfall, evapotranspiration, net‐water index, soil water retention, elevation, slope, drainage proximity, and density, were generated from spatial data representing climate, soil, vegetation, hydrology, and topography. These indices were weighted using the statistics‐based entropy method. The weighted indices were input into the WNB‐based model to delineate a regional flood risk map that indicates the likelihood of flood occurrence. The resultant map was validated by the maximum inundation extent extracted from moderate resolution imaging spectroradiometer (MODIS) imagery. The evaluation results, including mapping and evaluation of the distribution of flood hazard, are helpful in guiding flood inundation disaster responses for the region. The novel approach presented consists of weighted grid data, image‐based sampling and validation, cell‐by‐cell probability inferring and spatial mapping. It is superior to an existing spatial naive Bayes (NB) method for regional flood hazard assessment. It can also be extended to other likelihood‐related environmental hazard studies.  相似文献   

12.
As flood risks grow worldwide, a well‐designed insurance program engaging various stakeholders becomes a vital instrument in flood risk management. The main challenge concerns the applicability of standard approaches for calculating insurance premiums of rare catastrophic losses. This article focuses on the design of a flood‐loss‐sharing program involving private insurance based on location‐specific exposures. The analysis is guided by a developed integrated catastrophe risk management (ICRM) model consisting of a GIS‐based flood model and a stochastic optimization procedure with respect to location‐specific risk exposures. To achieve the stability and robustness of the program towards floods with various recurrences, the ICRM uses stochastic optimization procedure, which relies on quantile‐related risk functions of a systemic insolvency involving overpayments and underpayments of the stakeholders. Two alternative ways of calculating insurance premiums are compared: the robust derived with the ICRM and the traditional average annual loss approach. The applicability of the proposed model is illustrated in a case study of a Rotterdam area outside the main flood protection system in the Netherlands. Our numerical experiments demonstrate essential advantages of the robust premiums, namely, that they: (1) guarantee the program's solvency under all relevant flood scenarios rather than one average event; (2) establish a tradeoff between the security of the program and the welfare of locations; and (3) decrease the need for other risk transfer and risk reduction measures.  相似文献   

13.
Insights into the dynamics of human behavior in response to flooding are urgently needed for the development of effective integrated flood risk management strategies, and for integrating human behavior in flood risk modeling. However, our understanding of the dynamics of risk perceptions, attitudes, individual recovery processes, as well as adaptive (i.e., risk reducing) intention and behavior are currently limited because of the predominant use of cross-sectional surveys in the flood risk domain. Here, we present the results from one of the first panel surveys in the flood risk domain covering a relatively long period of time (i.e., four years after a damaging event), three survey waves, and a wide range of topics relevant to the role of citizens in integrated flood risk management. The panel data, consisting of 227 individuals affected by the 2013 flood in Germany, were analyzed using repeated-measures ANOVA and latent class growth analysis (LCGA) to utilize the unique temporal dimension of the data set. Results show that attitudes, such as the respondents’ perceived responsibility within flood risk management, remain fairly stable over time. Changes are observed partly for risk perceptions and mainly for individual recovery and intentions to undertake risk-reducing measures. LCGA reveal heterogeneous recovery and adaptation trajectories that need to be taken into account in policies supporting individual recovery and stimulating societal preparedness. More panel studies in the flood risk domain are needed to gain better insights into the dynamics of individual recovery, risk-reducing behavior, and associated risk and protective factors.  相似文献   

14.
We developed a simulation model for quantifying the spatio‐temporal distribution of contaminants (e.g., xenobiotics) and assessing the risk of exposed populations at the landscape level. The model is a spatio‐temporal exposure‐hazard model based on (i) tools of stochastic geometry (marked polygon and point processes) for structuring the landscape and describing the exposed individuals, (ii) a dispersal kernel describing the dissemination of contaminants from polygon sources, and (iii) an (eco)toxicological equation describing the toxicokinetics and dynamics of contaminants in affected individuals. The model was implemented in the briskaR package (b iological risk a ssessment with R ) of the R software. This article presents the model background, the use of the package in an illustrative example, namely, the effect of genetically modified maize pollen on nontarget Lepidoptera, and typical comparisons of landscape configurations that can be carried out with our model (different configurations lead to different mortality rates in the treated example). In real case studies, parameters and parametric functions encountered in the model will have to be precisely specified to obtain realistic measures of risk and impact and accurate comparisons of landscape configurations. Our modeling framework could be applied to study other risks related to agriculture, for instance, pathogen spread in crops or livestock, and could be adapted to cope with other hazards such as toxic emissions from industrial areas having health effects on surrounding populations. Moreover, the R package has the potential to help risk managers in running quantitative risk assessments and testing management strategies.  相似文献   

15.
In this article, the use of time series of satellite imagery to flood hazard mapping and flood risk assessment is presented. Flooded areas are extracted from satellite images for the flood‐prone territory, and a maximum flood extent image for each flood event is produced. These maps are further fused to determine relative frequency of inundation (RFI). The study shows that RFI values and relative water depth exhibit the same probabilistic distribution, which is confirmed by Kolmogorov‐Smirnov test. The produced RFI map can be used as a flood hazard map, especially in cases when flood modeling is complicated by lack of available data and high uncertainties. The derived RFI map is further used for flood risk assessment. Efficiency of the presented approach is demonstrated for the Katima Mulilo region (Namibia). A time series of Landsat‐5/7 satellite images acquired from 1989 to 2012 is processed to derive RFI map using the presented approach. The following direct damage categories are considered in the study for flood risk assessment: dwelling units, roads, health facilities, and schools. The produced flood risk map shows that the risk is distributed uniformly all over the region. The cities and villages with the highest risk are identified. The proposed approach has minimum data requirements, and RFI maps can be generated rapidly to assist rescuers and decisionmakers in case of emergencies. On the other hand, limitations include: strong dependence on the available data sets, and limitations in simulations with extrapolated water depth values.  相似文献   

16.
Qing Miao 《Risk analysis》2019,39(6):1298-1313
There has been a growing interest in understanding whether and how people adapt to extreme weather events in a changing climate. This article presents one of the first empirical analyses of adaptation to flooding on a global scale. Using a sample of 97 countries between 1985 and 2010, we investigate the extent and pattern of flood adaptation by estimating the effects of a country's climatological risk, recent flood experiences, and socioeconomic characteristics on its flood‐related fatalities. Our results provide mixed evidence on adaptation: countries facing greater long‐term climatological flooding risks do not necessarily adapt better and suffer fewer fatalities; however, after controlling for the cross‐country heterogeneity, we find that more recent flooding shocks have a significant and negative effect on fatalities from subsequent floods. These findings may suggest the short‐term learning dynamics of adaptation and potential inefficacy of earlier flood control measures, particularly those that promote increased exposure in floodplains. Our findings provide important implications for climate adaptation policy making and climate modeling.  相似文献   

17.
Bob Maaskant 《Risk analysis》2011,31(2):282-300
The Dutch government is in the process of revising its flood safety policy. The current safety standards for flood defenses in the Netherlands are largely based on the outcomes of cost‐benefit analyses. Loss of life has not been considered separately in the choice for current standards. This article presents the results of a research project that evaluated the potential roles of two risk metrics, individual and societal risk, to support decision making about new flood safety standards. These risk metrics are already used in the Dutch major hazards policy for the evaluation of risks to the public. Individual risk concerns the annual probability of death of a person. Societal risk concerns the probability of an event with many fatalities. Technical aspects of the use of individual and societal risk metrics in flood risk assessments as well as policy implications are discussed. Preliminary estimates of nationwide levels of societal risk are presented. Societal risk levels appear relatively high in the southwestern part of the country where densely populated dike rings are threatened by a combination of river and coastal floods. It was found that cumulation, the simultaneous flooding of multiple dike rings during a single flood event, has significant impact on the national level of societal risk. Options for the application of the individual and societal risk in the new flood safety policy are presented and discussed.  相似文献   

18.
It is well recognized that adaptive and flexible flood risk strategies are required to account for future uncertainties. Development of such strategies is, however, a challenge. Climate change alone is a significant complication, but, in addition, complexities exist trying to identify the most appropriate set of mitigation measures, or interventions. There are a range of economic and environmental performance measures that require consideration, and the spatial and temporal aspects of evaluating the performance of these is complex. All these elements pose severe difficulties to decisionmakers. This article describes a decision support methodology that has the capability to assess the most appropriate set of interventions to make in a flood system and the opportune time to make these interventions, given the future uncertainties. The flood risk strategies have been explicitly designed to allow for flexible adaptive measures by capturing the concepts of real options and multiobjective optimization to evaluate potential flood risk management opportunities. A state‐of‐the‐art flood risk analysis tool is employed to evaluate the risk associated to each strategy over future points in time and a multiobjective genetic algorithm is utilized to search for the optimal adaptive strategies. The modeling system has been applied to a reach on the Thames Estuary (London, England), and initial results show the inclusion of flexibility is advantageous, while the outputs provide decisionmakers with supplementary knowledge that previously has not been considered.  相似文献   

19.
Modeling the dependence between uncertainties in decision and risk analyses is an important part of the problem structuring process. We focus on situations where correlated uncertainties are discrete, and extend the concept of the copula‐based approach for modeling correlated continuous uncertainties to the representation of correlated discrete uncertainties. This approach reduces the required number of probability assessments significantly compared to approaches requiring direct estimates of conditional probabilities. It also allows the use of multiple dependence measures, including product moment correlation, rank order correlation and tail dependence, and parametric families of copulas such as normal copulas, t‐copulas, and Archimedean copulas. This approach can be extended to model the dependence between discrete and continuous uncertainties in the same event tree.  相似文献   

20.
《Risk analysis》2018,38(8):1534-1540
An extreme space weather event has the potential to disrupt or damage infrastructure systems and technologies that many societies rely on for economic and social well‐being. Space weather events occur regularly, but extreme events are less frequent, with a small number of historical examples over the last 160 years. During the past decade, published works have (1) examined the physical characteristics of the extreme historical events and (2) discussed the probability or return rate of select extreme geomagnetic disturbances, including the 1859 Carrington event. Here we present initial findings on a unified framework approach to visualize space weather event probability, using a Bayesian model average, in the context of historical extreme events. We present disturbance storm time (Dst ) probability (a proxy for geomagnetic disturbance intensity) across multiple return periods and discuss parameters of interest to policymakers and planners in the context of past extreme space weather events. We discuss the current state of these analyses, their utility to policymakers and planners, the current limitations when compared to other hazards, and several gaps that need to be filled to enhance space weather risk assessments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号