首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article considers both Partial Least Squares (PLS) and Ridge Regression (RR) methods to combat multicollinearity problem. A simulation study has been conducted to compare their performances with respect to Ordinary Least Squares (OLS). With varying degrees of multicollinearity, it is found that both, PLS and RR, estimators produce significant reductions in the Mean Square Error (MSE) and Prediction Mean Square Error (PMSE) over OLS. However, from the simulation study it is evident that the RR performs better when the error variance is large and the PLS estimator achieves its best results when the model includes more variables. However, the advantage of the ridge regression method over PLS is that it can provide the 95% confidence interval for the regression coefficients while PLS cannot.  相似文献   

2.
Partial least squares regression has been widely adopted within some areas as a useful alternative to ordinary least squares regression in the manner of other shrinkage methods such as principal components regression and ridge regression. In this paper we examine the nature of this shrinkage and demonstrate that partial least squares regression exhibits some undesirable properties.  相似文献   

3.
The purpose of this paper is to examine the small sample properties of various ridge estimators along with least squares, in some special settings.Specifically, we consider a first order autoregressive structuure for normal and nonnormal disturbances, and report on a Monte Carlo study the small sample behavior of these estimators according to the criteria of bias and dispersion.The results suggest that under all the examined settings and for all the criteria used the HKB estimator exhibited a superior performance compared to the other estimators, while the LS and LW estimators gave consistently poor results.Also if the error term is only moderately autocorrelated the performance of the ridge estimators that do not account for autocorrelation outperform their counterparts as well as least squares that account for autocorrelation.  相似文献   

4.
It is well-known in the literature on multicollinearity that one of the major consequences of multicollinearity on the ordinary least squares estimator is that the estimator produces large sampling variances, which in turn might inappropriately lead to exclusion of otherwise significant coefficients from the model. To circumvent this problem, two accepted estimation procedures which are often suggested are the restricted least squares method and the ridge regression method. While the former leads to a reduction in the sampling variance of the estimator, the later ensures a smaller mean square error value for the estimator. In this paper we have proposed a new estimator which is based on a criterion that combines the ideas underlying these two estimators. The standard properties of this new estimator have been studied in the paper. It has also been shown that this estimator is superior to both the restricted least squares as well as the ordinary ridge regression estimators by the criterion of mean sauare error of the estimator of the regression coefficients when the restrictions are indeed correct. The conditions for superiority of this estimator over the other two have also been derived for the situation when the restrictions are not correct.  相似文献   

5.
Most methods for survival prediction from high-dimensional genomic data combine the Cox proportional hazards model with some technique of dimension reduction, such as partial least squares regression (PLS). Applying PLS to the Cox model is not entirely straightforward, and multiple approaches have been proposed. The method of Park et al. (Bioinformatics 18(Suppl. 1):S120–S127, 2002) uses a reformulation of the Cox likelihood to a Poisson type likelihood, thereby enabling estimation by iteratively reweighted partial least squares for generalized linear models. We propose a modification of the method of park et al. (2002) such that estimates of the baseline hazard and the gene effects are obtained in separate steps. The resulting method has several advantages over the method of park et al. (2002) and other existing Cox PLS approaches, as it allows for estimation of survival probabilities for new patients, enables a less memory-demanding estimation procedure, and allows for incorporation of lower-dimensional non-genomic variables like disease grade and tumor thickness. We also propose to combine our Cox PLS method with an initial gene selection step in which genes are ordered by their Cox score and only the highest-ranking k% of the genes are retained, obtaining a so-called supervised partial least squares regression method. In simulations, both the unsupervised and the supervised version outperform other Cox PLS methods.  相似文献   

6.
This paper investigates two “non-exact” t-type tests, t( k2) and t(k2), of the individual coefficients of a linear regression model, based on two ordinary ridge estimators. The reported results are built on a simulation study covering 84 different models. For models with large standard errors, the ridge-based t-tests have correct levels with considerable gain in powers over those of the least squares t-test, t(0). For models with small standard errors, t(k1) is found to be liberal and is not safe to use while, t(k2) is found to slightly exceed the nominal level in few cases. When tie two ridge tests art: not winners, the results indicate that they don't loose much against t(0).  相似文献   

7.
8.
We present an estimating framework for quantile regression where the usual L 1-norm objective function is replaced by its smooth parametric approximation. An exact path-following algorithm is derived, leading to the well-known ‘basic’ solutions interpolating exactly a number of observations equal to the number of parameters being estimated. We discuss briefly possible practical implications of the proposed approach, such as early stopping for large data sets, confidence intervals, and additional topics for future research.  相似文献   

9.
The regression function R(?) to be estimated is assumed to have an expansion in terms of specified functions, orthogonalized vich respect to values of the explanatory variable. Relative precisions of OBSERVATION are assumed known. The estimate is the posterior linear mean of R(?) given the data. The investigator plots graphs of appropriate functions as an aid in eliciting his prior means and precisions for the coefficients in the expansion. The method is illustrated by an example using simulated data, an example in which effects of various dosages of Vitamin D are estimated, and an example in which a utility function is estimated.  相似文献   

10.
The weighted least squares (WLS) estimator is often employed in linear regression using complex survey data to deal with the bias in ordinary least squares (OLS) arising from informative sampling. In this paper a 'quasi-Aitken WLS' (QWLS) estimator is proposed. QWLS modifies WLS in the same way that Cragg's quasi-Aitken estimator modifies OLS. It weights by the usual inverse sample inclusion probability weights multiplied by a parameterized function of covariates, where the parameters are chosen to minimize a variance criterion. The resulting estimator is consistent for the superpopulation regression coefficient under fairly mild conditions and has a smaller asymptotic variance than WLS.  相似文献   

11.
Several approaches have been suggested for fitting linear regression models to censored data. These include Cox's propor­tional hazard models based on quasi-likelihoods. Methods of fitting based on least squares and maximum likelihoods have also been proposed. The methods proposed so far all require special purpose optimization routines. We describe an approach here which requires only a modified standard least squares routine.

We present methods for fitting a linear regression model to censored data by least squares and method of maximum likelihood. In the least squares method, the censored values are replaced by their expectations, and the residual sum of squares is minimized. Several variants are suggested in the ways in which the expect­ation is calculated. A parametric (assuming a normal error model) and two non-parametric approaches are described. We also present a method for solving the maximum likelihood equations in the estimation of the regression parameters in the censored regression situation. It is shown that the solutions can be obtained by a recursive algorithm which needs only a least squares routine for optimization. The suggested procesures gain considerably in computational officiency. The Stanford Heart Transplant data is used to illustrate the various methods.  相似文献   

12.
The paper considers the consequences of incorrectly using the ordinary least squares estimator, when the true but unknown model is a switching regression. Bias and mean square error express ons are given for slope and residual variance estimators. Except for in very specialized cases the estimators are biased. A numerical exarnple illustrates some of the issues raised and provides a conpelison between the ordinary least squares and maximum likelihood estimators.  相似文献   

13.
14.
Consider a partially linear regression model with an unknown vector parameter β, an unknown functiong(·), and unknown heteroscedastic error variances. In this paper we develop an asymptotic semiparametric generalized least squares estimation theory under some weak moment conditions. These moment conditions are satisfied by many of the error distributions encountered in practice, and our theory does not require the number of replications to go to infinity.  相似文献   

15.
A class of trimmed linear conditional estimators based on regression quantiles for the linear regression model is introduced. This class serves as a robust analogue of non-robust linear unbiased estimators. Asymptotic analysis then shows that the trimmed least squares estimator based on regression quantiles ( Koenker and Bassett ( 1978 ) ) is the best in this estimator class in terms of asymptotic covariance matrices. The class of trimmed linear conditional estimators contains the Mallows-type bounded influence trimmed means ( see De Jongh et al ( 1988 ) ) and trimmed instrumental variables estimators. A large sample methodology based on trimmed instrumental variables estimator for confidence ellipsoids and hypothesis testing is also provided.  相似文献   

16.
Bernd Droge 《Statistics》2013,47(3):181-203
This paper is mainly concerned with deriving finite-sample properties of least squares estimators for the regression function in a nonparametric regression situation under some simplifying assumptions such as normally distributed errors with a common known variance. The selection of basis functions to be used for the construction of an estimator may be regarded as a smoothing problem, and will usually be done in a data-dependent way, A straightforward application of a result by P. J. Kernpthorne yields that, under a squared error loss, all selection procedures are admissible. Furthermore, the minimax approach provides an interpolating estimator, which is often impractical, Therefore, within a certain class of selection procedures an optimal one is determined using the minimax regret principle. It can be seen to behave similarly to the procedure minimizing either an unbiased risk estimator or, equivalently, the Cp-criterion.  相似文献   

17.
This paper proposes the second-order least squares estimation, which is an extension of the ordinary least squares method, for censored regression models where the error term has a general parametric distribution (not necessarily normal). The strong consistency and asymptotic normality of the estimator are derived under fairly general regularity conditions. We also propose a computationally simpler estimator which is consistent and asymptotically normal under the same regularity conditions. Finite sample behavior of the proposed estimators under both correctly and misspecified models are investigated through Monte Carlo simulations. The simulation results show that the proposed estimator using optimal weighting matrix performs very similar to the maximum likelihood estimator, and the estimator with the identity weight is more robust against the misspecification.  相似文献   

18.
Five biased estimators of the slope in straight line regression are considered. For each, the estimate of the “bias parameter”, k, is a function of N, the number of observations, and [rcirc]2 , the square of the least squares estimate of the standardized slope, β. The estimators include that of Farebrother, the ridge estimator of Hoerl, Kennard, and Baldwin, Vinod's shrunken estimators., and a new modification of one of the latter. Properties of the estimators are studied for 13 combinations of N and 3. Results of simulation experiments provide empirical evidence concerning the values of means and variances of the biased estimators of the slope and estimates of the “bias parameter”, the mean square errors of the estimators, and the frequency of improvement relative to least squares. Adjustments to degrees of freedom in the biased regression analysis of variance table are also considered. An extension of the new modification to the case of p> 1 independent variables is presented in an Appendix.  相似文献   

19.
20.
Least trimmed squares (LTS) provides a parametric family of high breakdown estimators in regression with better asymptotic properties than least median of squares (LMS) estimators. We adapt the forward search algorithm of Atkinson (1994) to LTS and provide methods for determining the amount of data to be trimmed. We examine the efficiency of different trimming proportions by simulation and demonstrate the increasing efficiency of parameter estimation as larger proportions of data are fitted using the LTS criterion. Some standard data examples are analysed. One shows that LTS provides more stable solutions than LMS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号