首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper examines the formation of maximum likelihood estimates of cell means in analysis of variance problems for cells with missing observations. Methods of estimating the means for missing cells has a long history which includes iterative maximum likelihood techniques, approximation techniques and ad hoc techniques. The use of the EM algorithm to form maximum likelihood estimates has resolved most of the issues associated with this problem. Implementation of the EM algorithm entails specification of a reduced model. As demonstrated in this paper, when there are several missing cells, it is possible to specify a reduced model that results in an unidentifiable likelihood. The EM algorithm in this case does not converge, although the slow divergence may often be mistaken by the unwary as convergence. This paper presents a simple matrix method of determining whether or not the reduced model results in an identifiable likelihood, and consequently in an EM algorithm that converges. We also show the EM algorithm in this case to be equivalent to a method which yields a closed form solution.  相似文献   

2.
The EM algorithm and its extensions are very popular tools for maximum likelihood estimation in incomplete data setting. However, one of the limitations of these methods is their slow convergence. The PX-EM (parameter-expanded EM) algorithm was proposed by Liu, Rubin and Wu to make EM much faster. On the other hand, stochastic versions of EM are powerful alternatives of EM when the E-step is untractable in a closed form. In this paper we propose the PX-SAEM which is a parameter expansion version of the so-called SAEM (Stochastic Approximation version of EM). PX-SAEM is shown to accelerate SAEM and improve convergence toward the maximum likelihood estimate in a parametric framework. Numerical examples illustrate the behavior of PX-SAEM in linear and nonlinear mixed effects models.  相似文献   

3.
The label-switching problem is one of the fundamental problems in Bayesian mixture analysis. Using all the Markov chain Monte Carlo samples as the initials for the expectation-maximization (EM) algorithm, we propose to label the samples based on the modes they converge to. Our method is based on the assumption that the samples converged to the same mode have the same labels. If a relative noninformative prior is used or the sample size is large, the posterior will be close to the likelihood and then the posterior modes can be located approximately by the EM algorithm for mixture likelihood, without assuming the availability of the closed form of the posterior. In order to speed up the computation of this labeling method, we also propose to first cluster the samples by K-means with a large number of clusters K. Then, by assuming that the samples within each cluster have the same labels, we only need to find one converged mode for each cluster. Using a Monte Carlo simulation study and a real dataset, we demonstrate the success of our new method in dealing with the label-switching problem.  相似文献   

4.
The Expectation–Maximization (EM) algorithm is a very popular technique for maximum likelihood estimation in incomplete data models. When the expectation step cannot be performed in closed form, a stochastic approximation of EM (SAEM) can be used. Under very general conditions, the authors have shown that the attractive stationary points of the SAEM algorithm correspond to the global and local maxima of the observed likelihood. In order to avoid convergence towards a local maxima, a simulated annealing version of SAEM is proposed. An illustrative application to the convolution model for estimating the coefficients of the filter is given.  相似文献   

5.
A general formulation of mixed proportional hazard models with K random effects is provided. It enables to account for a population stratified at K different levels. I then show how to approximate the partial maximum likelihood estimator using an EM algorithm. In a Monte Carlo study, the behavior of the estimator is assessed and I provide an application to the ratification of ILO conventions. Compared to other procedures, the results indicate an important decrease in computing time, as well as improved convergence and stability.  相似文献   

6.
In empirical Bayes inference one is typically interested in sampling from the posterior distribution of a parameter with a hyper-parameter set to its maximum likelihood estimate. This is often problematic particularly when the likelihood function of the hyper-parameter is not available in closed form and the posterior distribution is intractable. Previous works have dealt with this problem using a multi-step approach based on the EM algorithm and Markov Chain Monte Carlo (MCMC). We propose a framework based on recent developments in adaptive MCMC, where this problem is addressed more efficiently using a single Monte Carlo run. We discuss the convergence of the algorithm and its connection with the EM algorithm. We apply our algorithm to the Bayesian Lasso of Park and Casella (J. Am. Stat. Assoc. 103:681–686, 2008) and on the empirical Bayes variable selection of George and Foster (J. Am. Stat. Assoc. 87:731–747, 2000).  相似文献   

7.
An n-stage splitting algorithm for the solution of maximum penalized likelihood estimation (MPLE) problems is compared to the one-step-late (OSL) algorithm. General conditions under which the asymptotic rate of convergence of this splitting algorithm. exceeds that of the OSL algorithm are given. A one-dimensional positive data example, illustrates the comparison of the rates of convergence of these two algorithms.  相似文献   

8.
To obtain maximum likelihood (ML) estimation in factor analysis (FA), we propose in this paper a novel and fast conditional maximization (CM) algorithm, which has quadratic and monotone convergence, consisting of a sequence of CM log-likelihood (CML) steps. The main contribution of this algorithm is that the closed form expression for the parameter to be updated in each step can be obtained explicitly, without resorting to any numerical optimization methods. In addition, a new ECME algorithm similar to Liu’s (Biometrika 81, 633–648, 1994) one is obtained as a by-product, which turns out to be very close to the simple iteration algorithm proposed by Lawley (Proc. R. Soc. Edinb. 60, 64–82, 1940) but our algorithm is guaranteed to increase log-likelihood at every iteration and hence to converge. Both algorithms inherit the simplicity and stability of EM but their convergence behaviors are much different as revealed in our extensive simulations: (1) In most situations, ECME and EM perform similarly; (2) CM outperforms EM and ECME substantially in all situations, no matter assessed by the CPU time or the number of iterations. Especially for the case close to the well known Heywood case, it accelerates EM by factors of around 100 or more. Also, CM is much more insensitive to the choice of starting values than EM and ECME.  相似文献   

9.
In lifetime analysis of electric transformers, the maximum likelihood estimation has been proposed with the EM algorithm. However, it is not clear whether the EM algorithm offers a better solution compared to the simpler Newton-Raphson (NR) algorithm. In this article, the first objective is a systematic comparison of the EM algorithm with the NR algorithm in terms of convergence performance. The second objective is to examine the performance of Akaike's information criterion (AIC) for selecting a suitable distribution among candidate models via simulations. These methods are illustrated through the electric power transformer dataset.  相似文献   

10.
The three-parameter asymmetric Laplace distribution (ALD) has received increasing attention in the field of quantile regression due to an important feature between its location and asymmetric parameters. On the basis of the representation of the ALD as a normal-variance–mean mixture with an exponential mixing distribution, this article develops EM and generalized EM algorithms, respectively, for computing regression quantiles of linear and nonlinear regression models. It is interesting to show that the proposed EM algorithm and the MM (Majorization–Minimization) algorithm for quantile regressions are really the same in terms of computation, since the updating formula of them are the same. This provides a good example that connects the EM and MM algorithms. Simulation studies show that the EM algorithm can successfully recover the true parameters in quantile regressions.  相似文献   

11.
The maximum likelihood estimation of parameters of the Poisson binomial distribution, based on a sample with exact and grouped observations, is considered by applying the EM algorithm (Dempster et al, 1977). The results of Louis (1982) are used in obtaining the observed information matrix and accelerating the convergence of the EM algorithm substantially. The maximum likelihood estimation from samples consisting entirely of complete (Sprott, 1958) or grouped observations are treated as special cases of the estimation problem mentioned above. A brief account is given for the implementation of the EM algorithm when the sampling distribution is the Neyman Type A since the latter is a limiting form of the Poisson binomial. Numerical examples based on real data are included.  相似文献   

12.
We propose a new stochastic approximation (SA) algorithm for maximum-likelihood estimation (MLE) in the incomplete-data setting. This algorithm is most useful for problems when the EM algorithm is not possible due to an intractable E-step or M-step. Compared to other algorithm that have been proposed for intractable EM problems, such as the MCEM algorithm of Wei and Tanner (1990), our proposed algorithm appears more generally applicable and efficient. The approach we adopt is inspired by the Robbins-Monro (1951) stochastic approximation procedure, and we show that the proposed algorithm can be used to solve some of the long-standing problems in computing an MLE with incomplete data. We prove that in general O(n) simulation steps are required in computing the MLE with the SA algorithm and O(n log n) simulation steps are required in computing the MLE using the MCEM and/or the MCNR algorithm, where n is the sample size of the observations. Examples include computing the MLE in the nonlinear error-in-variable model and nonlinear regression model with random effects.  相似文献   

13.
The EM algorithm is the standard method for estimating the parameters in finite mixture models. Yang and Pan [25] proposed a generalized classification maximum likelihood procedure, called the fuzzy c-directions (FCD) clustering algorithm, for estimating the parameters in mixtures of von Mises distributions. Two main drawbacks of the EM algorithm are its slow convergence and the dependence of the solution on the initial value used. The choice of initial values is of great importance in the algorithm-based literature as it can heavily influence the speed of convergence of the algorithm and its ability to locate the global maximum. On the other hand, the algorithmic frameworks of EM and FCD are closely related. Therefore, the drawbacks of FCD are the same as those of the EM algorithm. To resolve these problems, this paper proposes another clustering algorithm, which can self-organize local optimal cluster numbers without using cluster validity functions. These numerical results clearly indicate that the proposed algorithm is superior in performance of EM and FCD algorithms. Finally, we apply the proposed algorithm to two real data sets.  相似文献   

14.
Spatio-temporal processes are often high-dimensional, exhibiting complicated variability across space and time. Traditional state-space model approaches to such processes in the presence of uncertain data have been shown to be useful. However, estimation of state-space models in this context is often problematic since parameter vectors and matrices are of high dimension and can have complicated dependence structures. We propose a spatio-temporal dynamic model formulation with parameter matrices restricted based on prior scientific knowledge and/or common spatial models. Estimation is carried out via the expectation–maximization (EM) algorithm or general EM algorithm. Several parameterization strategies are proposed and analytical or computational closed form EM update equations are derived for each. We apply the methodology to a model based on an advection–diffusion partial differential equation in a simulation study and also to a dimension-reduced model for a Palmer Drought Severity Index (PDSI) data set.  相似文献   

15.
Parametric incomplete data models defined by ordinary differential equations (ODEs) are widely used in biostatistics to describe biological processes accurately. Their parameters are estimated on approximate models, whose regression functions are evaluated by a numerical integration method. Accurate and efficient estimations of these parameters are critical issues. This paper proposes parameter estimation methods involving either a stochastic approximation EM algorithm (SAEM) in the maximum likelihood estimation, or a Gibbs sampler in the Bayesian approach. Both algorithms involve the simulation of non-observed data with conditional distributions using Hastings–Metropolis (H–M) algorithms. A modified H–M algorithm, including an original local linearization scheme to solve the ODEs, is proposed to reduce the computational time significantly. The convergence on the approximate model of all these algorithms is proved. The errors induced by the numerical solving method on the conditional distribution, the likelihood and the posterior distribution are bounded. The Bayesian and maximum likelihood estimation methods are illustrated on a simulated pharmacokinetic nonlinear mixed-effects model defined by an ODE. Simulation results illustrate the ability of these algorithms to provide accurate estimates.  相似文献   

16.
The EM algorithm is a popular method for parameter estimation in situations where the data can be viewed as being incomplete. As each E-step visits each data point on a given iteration, the EM algorithm requires considerable computation time in its application to large data sets. Two versions, the incremental EM (IEM) algorithm and a sparse version of the EM algorithm, were proposed recently by Neal R.M. and Hinton G.E. in Jordan M.I. (Ed.), Learning in Graphical Models, Kluwer, Dordrecht, 1998, pp. 355–368 to reduce the computational cost of applying the EM algorithm. With the IEM algorithm, the available n observations are divided into B (B n) blocks and the E-step is implemented for only a block of observations at a time before the next M-step is performed. With the sparse version of the EM algorithm for the fitting of mixture models, only those posterior probabilities of component membership of the mixture that are above a specified threshold are updated; the remaining component-posterior probabilities are held fixed. In this paper, simulations are performed to assess the relative performances of the IEM algorithm with various number of blocks and the standard EM algorithm. In particular, we propose a simple rule for choosing the number of blocks with the IEM algorithm. For the IEM algorithm in the extreme case of one observation per block, we provide efficient updating formulas, which avoid the direct calculation of the inverses and determinants of the component-covariance matrices. Moreover, a sparse version of the IEM algorithm (SPIEM) is formulated by combining the sparse E-step of the EM algorithm and the partial E-step of the IEM algorithm. This SPIEM algorithm can further reduce the computation time of the IEM algorithm.  相似文献   

17.
The EM algorithm is a popular method for maximizing a likelihood in the presence of incomplete data. When the likelihood has multiple local maxima, the parameter space can be partitioned into domains of convergence, one for each local maximum. In this paper we investigate these domains for the location family generated by the t-distribution. We show that, perhaps somewhat surprisingly, these domains need not be connected sets. As an extreme case we give an example of a domain which consists of an infinite union of disjoint open intervals. Thus the convergence behaviour of the EM algorithm can be quite sensitive to the starting point.  相似文献   

18.
This paper presents an EM algorithm for maximum likelihood estimation in generalized linear models with overdispersion. The algorithm is initially derived as a form of Gaussian quadrature assuming a normal mixing distribution, but with only slight variation it can be used for a completely unknown mixing distribution, giving a straightforward method for the fully non-parametric ML estimation of this distribution. This is of value because the ML estimates of the GLM parameters may be sensitive to the specification of a parametric form for the mixing distribution. A listing of a GLIM4 algorithm for fitting the overdispersed binomial logit model is given in an appendix.A simple method is given for obtaining correct standard errors for parameter estimates when using the EM algorithm.Several examples are discussed.  相似文献   

19.
Effectively solving the label switching problem is critical for both Bayesian and Frequentist mixture model analyses. In this article, a new relabeling method is proposed by extending a recently developed modal clustering algorithm. First, the posterior distribution is estimated by a kernel density from permuted MCMC or bootstrap samples of parameters. Second, a modal EM algorithm is used to find the m! symmetric modes of the KDE. Finally, samples that ascend to the same mode are assigned the same label. Simulations and real data applications demonstrate that the new method provides more accurate estimates than many existing relabeling methods.  相似文献   

20.
Estimators derived from the expectation‐maximization (EM) algorithm are not robust since they are based on the maximization of the likelihood function. We propose an iterative proximal‐point algorithm based on the EM algorithm to minimize a divergence criterion between a mixture model and the unknown distribution that generates the data. The algorithm estimates in each iteration the proportions and the parameters of the mixture components in two separate steps. Resulting estimators are generally robust against outliers and misspecification of the model. Convergence properties of our algorithm are studied. The convergence of the introduced algorithm is discussed on a two‐component Weibull mixture entailing a condition on the initialization of the EM algorithm in order for the latter to converge. Simulations on Gaussian and Weibull mixture models using different statistical divergences are provided to confirm the validity of our work and the robustness of the resulting estimators against outliers in comparison to the EM algorithm. An application to a dataset of velocities of galaxies is also presented. The Canadian Journal of Statistics 47: 392–408; 2019 © 2019 Statistical Society of Canada  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号