首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Demand for air travel is projected to increase in the upcoming years, with a corresponding influence on emissions, air quality, and public health. The trajectory of health impacts would be influenced by not just emissions growth, but also changes in nonaviation ambient concentrations that influence secondary fine particulate matter (PM2.5) formation, population growth and aging, and potential shifts in PM2.5 concentration‐response functions (CRFs). However, studies to date have not systematically evaluated the individual and joint contributions of these factors to health risk trajectories. In this study, we simulated emissions during landing and takeoff from aircraft at 99 airports across the United States for 2005 and for a 2025 flight activity projection scenario. We applied the Community Multiscale Air Quality (CMAQ) model with the Speciated Modeled Attainment Test (SMAT) to determine the contributions of these emissions to ambient concentrations, including scenarios with 2025 aircraft emissions and 2005 nonaviation air quality. We combined CMAQ outputs with PM2.5 mortality CRFs and population projections, and evaluated the influence of changing emissions, nonaviation concentrations, and population factors. Given these scenarios, aviation‐related health impacts would increase by a factor of 6.1 from 2005 to 2025, with a factor of 2.1 attributable to emissions, a factor of 1.3 attributable to population factors, and a factor of 2.3 attributable to changing nonaviation concentrations which enhance secondary PM2.5 formation. Our study emphasizes that the public health burden of aviation emissions would be significantly influenced by the joint effects of flight activity increases, nonaviation concentration changes, and population growth and aging.  相似文献   

3.
In this article a preliminary analysis of the loss of life caused by Hurricane Katrina in the New Orleans metropolitan area is presented. The hurricane caused more than 1,100 fatalities in the state of Louisiana. A preliminary data set that gives information on the recovery locations and individual characteristics for 771 fatalities has been analyzed. One-third of the analyzed fatalities occurred outside the flooded areas or in hospitals and shelters in the flooded area. These fatalities were due to the adverse public health situation that developed after the floods. Two-thirds of the analyzed fatalities were most likely associated with the direct physical impacts of the flood and mostly caused by drowning. The majority of victims were elderly: nearly 60% of fatalities were over 65 years old. Similar to historical flood events, mortality rates were highest in areas near severe breaches and in areas with large water depths. An empirical relationship has been derived between the water depth and mortality and this has been compared with similar mortality functions proposed based on data for other flood events. The overall mortality among the exposed population for this event was approximately 1%, which is similar to findings for historical flood events. Despite the fact that the presented results are preliminary they give important insights into the determinants of loss of life and the relationship between mortality and flood characteristics.  相似文献   

4.
To quantify the on‐road PM2.5‐related premature mortality at a national scale, previous approaches to estimate concentrations at a 12‐km × 12‐km or larger grid cell resolution may not fully characterize concentration hotspots that occur near roadways and thus the areas of highest risk. Spatially resolved concentration estimates from on‐road emissions to capture these hotspots may improve characterization of the associated risk, but are rarely used for estimating premature mortality. In this study, we compared the on‐road PM2.5‐related premature mortality in central North Carolina with two different concentration estimation approaches—(i) using the Community Multiscale Air Quality (CMAQ) model to model concentration at a coarser resolution of a 36‐km × 36‐km grid resolution, and (ii) using a hybrid of a Gaussian dispersion model, CMAQ, and a space–time interpolation technique to provide annual average PM2.5 concentrations at a Census‐block level (~105,000 Census blocks). The hybrid modeling approach estimated 24% more on‐road PM2.5‐related premature mortality than CMAQ. The major difference is from the primary on‐road PM2.5 where the hybrid approach estimated 2.5 times more primary on‐road PM2.5‐related premature mortality than CMAQ due to predicted exposure hotspots near roadways that coincide with high population areas. The results show that 72% of primary on‐road PM2.5 premature mortality occurs within 1,000 m from roadways where 50% of the total population resides, highlighting the importance to characterize near‐road primary PM2.5 and suggesting that previous studies may have underestimated premature mortality due to PM2.5 from traffic‐related emissions.  相似文献   

5.
Public risk perceptions of mass disasters carry considerable influences, both psychologically and economically, despite their oft‐times imprecise nature. Prior research has identified the presence of an optimistic bias that affects risk perception, but there is a dearth of literature examining how these perceptions differ among cultures—particularly with regard to mass disasters. The present study explores differences among Japanese, Argentinean, and North American mental health workers in their rates of the optimistic bias in risk perceptions as contrasted between natural disasters and terrorist events. The results indicate a significant difference among cultures in levels of perceived risk that do not correspond to actual exposure rates. Japanese groups had the highest risk perceptions for both types of hazards and North Americans and Argentineans had the lowest risk perceptions for terrorism. Additionally, participants across all cultures rated risk to self as lower than risk to others (optimistic bias) across all disaster types. These findings suggest that cultural factors may have a greater influence on risk perception than social exposure, and that the belief that one is more immune to disasters compared to others may be a cross‐cultural phenomenon.  相似文献   

6.
An attempt is made to analyze in quantitative terms the uncertainties in multiple regression estimates of the effects of air pollution on death rates. A range of factors--statistical fluctuations in numbers of deaths, differences in local age distribution, differences in smoking habits, errors in estimated pollution levels, migration, and variability of the characterization of socioeconomic effects--are assessed as potential sources of error. Both the precision and the robustness of the regression calculation are shown to be poor. Examples and illustrative calculations are given based on a study of U. K. death rates around the 1971 Census.  相似文献   

7.
A number of recent analyses have computed present and future costs associated with a risk by estimating what would happen if the risk were absent. Two sources of bias are associated with this approach: (1) differences in confounding factors between present risk avoiders and risk takers, and (2) the difficulty of selecting an unbiased sample of risk avoiders. A staff memo from the Office of Technology Assessment used this approach to estimate mortality due to smoking. Numbers of deaths and age at death distributions of U.S. smokers and nonsmokers for all causes, all cancers, lung cancers, heart disease, and cerebrovascular lesions are used to assess the accuracy of these estimates. Large errors in the OTA estimates are found. Conditions are discussed that might help reduce errors from this approach.  相似文献   

8.
This article deals with the question of how societal impacts of fatal accidents can be integrated into the management of natural or man‐made hazards. Today, many governmental agencies give additional weight to the number of potential fatalities in their risk assessments to reflect society's aversion to large accidents. Although mortality risk aversion has been proposed in numerous risk management guidelines, there has been no evidence that lay people want public decisionmakers to overweight infrequent accidents of large societal consequences against more frequent ones of smaller societal consequences. Furthermore, it is not known whether public decisionmakers actually do such overweighting when they decide upon the mitigation of natural or technical hazards. In this article, we report on two experimental tasks that required participants to evaluate negative prospects involving 1–100 potential fatalities. Our results show that neither lay people nor hazard experts exhibit risk‐averse behavior in decisions on mortality risks.  相似文献   

9.
We consider a single‐period assemble‐to‐order system that produces two types of end products to satisfy two independent and stochastic customer orders. Each type of product is used to fulfill a particular customer order and these two products share a common component. Furthermore, one customer may confirm her order before the other one, and the manufacturer needs to make a commitment immediately upon the receipt of each customer order on how many products to be delivered. We propose a model for optimizing the inventory and production decisions under the above ATO environment. We also extend our model to the situation where the manufacturer can fulfill the unsatisfied low‐priority demand using the left‐over inventories after fulfilling the high‐priority demand, in case the low‐priority customer arrives first. Numerical experiments are conducted, which provide some interesting insights on the impact of uncertain demand pattern.  相似文献   

10.
《Risk analysis》2018,38(6):1239-1257
Protection motivation theory (PMT) has become a popular theory to explain the risk‐reducing behavior of residents against natural hazards. PMT captures the two main cognitive processes that individuals undergo when faced with a threat, namely, threat appraisal and coping appraisal. The latter describes the evaluation of possible response measures that may reduce or avert the perceived threat. Although the coping appraisal component of PMT was found to be a better predictor of protective intentions and behavior, little is known about the factors that influence individuals’ coping appraisals of natural hazards. More insight into flood‐coping appraisals of PMT, therefore, are needed to better understand the decision‐making process of individuals and to develop effective risk communication strategies. This study presents the results of two surveys among more than 1,600 flood‐prone households in Germany and France. Five hypotheses were tested using multivariate statistics regarding factors related to flood‐coping appraisals, which were derived from the PMT framework, related literature, and the literature on social vulnerability. We found that socioeconomic characteristics alone are not sufficient to explain flood‐coping appraisals. Particularly, observational learning from the social environment, such as friends and neighbors, is positively related to flood‐coping appraisals. This suggests that social norms and networks play an important role in flood‐preparedness decisions. Providing risk and coping information can also have a positive effect. Given the strong positive influence of the social environment on flood‐coping appraisals, future research should investigate how risk communication can be enhanced by making use of the observed social norms and network effects.  相似文献   

11.
A method is presented for projecting mortality rates for certain causes on the basis of observed rates during past years. This method arose from a study of trends in age-specific mortality rates for respiratory cancers, and for heuristic purposes it is shown how the method can be developed from certain theories of cancer induction. However, the method is applicable in the more common situation in which the underlying physical processes cannot be modeled with any confidence but the mortality rates are approximable over short time intervals by functions of the form a exp (bt) , where b may vary in a continuous, predictable fashion as the time interval is varied. It appears from applications to historical data that this projection method is in some cases a substantial improvement over conventional curve-fitting methods and often uncovers trends which are not apparent from observed data.  相似文献   

12.
Researchers have long recognized that subjective perceptions of risk are better predictors of choices over risky outcomes than science‐based or experts’ assessments of risk. More recent work suggests that uncertainty about risks also plays a role in predicting choices and behavior. In this article, we develop and estimate a formal model for an individual's perceived health risks associated with arsenic contamination of his or her drinking water. The modeling approach treats risk as a random variable, with an estimable probability distribution whose variance reflects uncertainty. The model we estimate uses data collected from a survey given to a sample of people living in arsenic‐prone areas in the United States. The findings from this article support the fact that scientific information is essential to explaining the mortality rate perceived by the individuals, but uncertainty about the probability remains significant.  相似文献   

13.
We analyzed the 1980 U.S. vital statistics and available ambient air pollution data bases for sulfates and fine, inhalable, and total suspended particles. Using multiple regression analyses, we conducted a cross-sectional analysis of the association between various particle measures and total mortality. Results from the various analyses indicated the importance of considering particle size, composition, and source information in modeling of particle pollution health effects. Of the independent mortality predictors considered, particle exposure measures related to the respirable and/or toxic fraction of the aerosols, such as fine particles and sulfates, were most consistently and significantly associated with the reported SMSA-specific total annual mortality rates. On the other hand, particle mass measures that included coarse particles (e.g., total suspended particles and inhalable particles) were often found to be nonsignificant predictors of total mortality. Furthermore, based on the application of fine particle source apportionment, particles from industrial sources (e.g., from iron/steel emissions) and from coal combustion were suggested to be more significant contributors to human mortality than soil-derived particles.  相似文献   

14.
15.
To analyze the loss of life expectancy (LLE) due to air pollution and the associated social cost, a dynamic model was developed that took into account the decrease of risk after the termination of an exposure to pollution. A key parameter was the time constant for the decrease of risk, for which estimates from studies of smoking were used. A sensitivity analysis showed that the precise value of the time constant(s) was not critical for the resulting LLE. An interesting aspect of the model was that the relation between population total LLE and PM2.5 concentration was numerically almost indistinguishable from a straight line, even though the functional dependence was nonlinear. This essentially linear behavior implies that the detailed history of a change in concentration does not matter, except for the effects of discounting. This model was used to correct the data of the largest study of chronic mortality for variations in past exposure, performed by Pope et al. in 1995; the correction factor was shown to depend on assumptions about the relative toxicity of the components of PM2.5. In the European Union, an increment of 1 microg/m3 of PM2.5 for 1 year implies an average LLE of 0.22 days per person. With regard to the social cost of an air pollution pulse, it was found that for typical discount rates (3% to 8% real) the cost was reduced by a factor of about 0.4 to 0.6 relative to the case with zero discount rate, if the value of a life year was taken as given; if the value of a life year was calculated from the "value of statistical life" by assuming the latter as a series of discounted annual values, the cost varied by at most +/-20% relative to the case with zero discount rate. To assess the uncertainties, this study also examined how the LLE depended on the demographics (mortality and age pyramid) of a population, and how it would change if the relative risk varied with age, in the manner suggested by smoking studies. These points were found to have a relatively small effect (compared to the epidemiological uncertainties) on the calculated LLE.  相似文献   

16.
To develop a quantitative exposure‐response relationship between concentrations and durations of inhaled diesel engine exhaust (DEE) and increases in lung cancer risks, we examined the role of temporal factors in modifying the estimated effects of exposure to DEE on lung cancer mortality and characterized risk by mine type in the Diesel Exhaust in Miners Study (DEMS) cohort, which followed 12,315 workers through December 1997. We analyzed the data using parametric functions based on concepts of multistage carcinogenesis to directly estimate the hazard functions associated with estimated exposure to a surrogate marker of DEE, respirable elemental carbon (REC). The REC‐associated risk of lung cancer mortality in DEMS is driven by increased risk in only one of four mine types (limestone), with statistically significant heterogeneity by mine type and no significant exposure‐response relationship after removal of the limestone mine workers. Temporal factors, such as duration of exposure, play an important role in determining the risk of lung cancer mortality following exposure to REC, and the relative risk declines after exposure to REC stops. There is evidence of effect modification of risk by attained age. The modifying impact of temporal factors and effect modification by age should be addressed in any quantitative risk assessment (QRA) of DEE. Until there is a better understanding of why the risk appears to be confined to a single mine type, data from DEMS cannot reliably be used for QRA.  相似文献   

17.
Forward Links to Citing Articles Retraction . Risk Analysis 25: 6, 1683
In the framework of the APHEIS program (Air Pollution and Health: A European Information System), a health impact assessment of air pollution in 26 European cities was performed for particles of an aerodynamic diameter less than or equal to 10 μm (PM10). For short-term effects, it was based on overall estimates from the APHEA-2 project (Air Pollution and Health: A European Approach). These city-specific risk assessments require city-specific concentration-response functions, raising the question of which concentration-response is most appropriate. Estimates from city-specific models are more specific, but have greater uncertainty than those provided from multicity analyses. We compared several estimates derived from the city-specific analyses in cities that were part of the APHEA-2 project, as well as in a city that was not included in APHEA-2 but was part of the APHEIS project. These estimates were: the estimates from a local regression model, the adjusted estimates based on two significant effect modifiers identified through meta-regression models, and the city-specific empirical Bayes (shrunken) estimates and their underlying distribution. The shrunken and adjusted estimates were used to improve the estimation of city-specific concentration-response function. From these different estimates, attributable numbers of deaths per year were calculated. The advantages and limits of the different approaches are discussed through real data and in a simulation study.  相似文献   

18.
State environmental agencies in the United States are charged with making risk management decisions that protect public health and the environment while managing limited technical, financial, and human resources. Meanwhile, the federal risk assessment community that provides risk assessment guidance to state agencies is challenged by the rapid growth of the global chemical inventory. When chemical toxicity profiles are unavailable on the U.S. Environmental Protection Agency's Integrated Risk Information System or other federal resources, each state agency must act independently to identify and select appropriate chemical risk values for application in human health risk assessment. This practice can lead to broad interstate variation in the toxicity values selected for any one chemical. Within this context, this article describes the decision‐making process and resources used by the federal government and individual U.S. states. The risk management of trichloroethylene (TCE) in the United States is presented as a case study to demonstrate the need for a collaborative approach among U.S. states toward identification and selection of chemical risk values while awaiting federal risk values to be set. The regulatory experience with TCE is contrasted with collaborative risk science models, such as the European Union's efforts in risk assessment harmonization. Finally, we introduce State Environmental Agency Risk Collaboration for Harmonization, a free online interactive tool designed to help to create a collaborative network among state agencies to provide a vehicle for efficiently sharing information and resources, and for the advancement of harmonization in risk values used among U.S. states when federal guidance is unavailable.  相似文献   

19.
As part of its assessment of the health risks associated with exposure to particulate matter (PM), the U.S. Environmental Protection Agency analyzed the risks associated with current levels, and the risk reductions that might be achieved by attainment of alternative PM standards, in two locations in the United States, Philadelphia, and Los Angeles. The concentration-response function describing the relation between a health endpoint and ambient PM concentrations is an important component, and a source of substantial uncertainty, in such risk analyses. In the absence of location-specific estimates, the concentration-response functions necessary for risk assessments in Philadelphia and Los Angeles must be inferred from the available information in other locations. Although the functional form of the concentration-response relations is assumed to be the same everywhere, the value of the PM coefficient in that function may vary from one location to another. Under this model, a distribution describes the probability that the PM coefficient in a randomly selected location will lie in any range of interest. An empirical Bayes estimation technique was used to improve the estimation of location-specific concentration-response functions relating mortality to short-term exposure to particles of aerodynamic diameter less than or equal to 2.5 microm (PM-2.5), for which functions have previously been estimated in several locations. The empirical Bayes-adjusted parameter values and their SEs were used to derive an estimate of the distribution of PM-2.5 coefficients for mortality associated with short-term exposures. From this distribution, distributions of relative risks corresponding to different specified changes in PM-2.5 concentrations could be derived.  相似文献   

20.
Technological or institutional change has proven to be a major cause of the failure of established firms, and history is full of examples. In a globalized world the capability of a firm to reconfigure existing competencies and create new knowledge for innovation has emerged as a dynamic capability to succeed. I examine the learning processes involved in the development of innovative R&D capabilities in Indian pharmaceutical firms as a response to the strengthening of patent law. The strong patent law represented a major institutional change for Indian firms which had grown in a weak patent era. The analysis shows that the development of new capabilities involved the removal of rigidities and the acquisition of new knowledge, and reveals that Indian firms are adopting strategies such as hiring of Indian scientists educated or working overseas in pharmaceutical R&D and collaborative R&D to acquire innovative R&D capabilities. It further points out the inter–intra firm heterogeneity in learning processes and suggests that the move from basic to advance level capabilities is neither linear nor automatic. It requires a deliberate effort and investment by firms in different mechanisms of learning. The Indian pharmaceutical firms' responses provide important insights for firms from other developing countries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号