首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Survival models are developed to predict response and time‐to‐response for mortality in rabbits following exposures to single or multiple aerosol doses of Bacillus anthracis spores. Hazard function models were developed for a multiple‐dose data set to predict the probability of death through specifying functions of dose response and the time between exposure and the time‐to‐death (TTD). Among the models developed, the best‐fitting survival model (baseline model) is an exponential dose–response model with a Weibull TTD distribution. Alternative models assessed use different underlying dose–response functions and use the assumption that, in a multiple‐dose scenario, earlier doses affect the hazard functions of each subsequent dose. In addition, published mechanistic models are analyzed and compared with models developed in this article. None of the alternative models that were assessed provided a statistically significant improvement in fit over the baseline model. The general approach utilizes simple empirical data analysis to develop parsimonious models with limited reliance on mechanistic assumptions. The baseline model predicts TTDs consistent with reported results from three independent high‐dose rabbit data sets. More accurate survival models depend upon future development of dose–response data sets specifically designed to assess potential multiple‐dose effects on response and time‐to‐response. The process used in this article to develop the best‐fitting survival model for exposure of rabbits to multiple aerosol doses of B. anthracis spores should have broad applicability to other host–pathogen systems and dosing schedules because the empirical modeling approach is based upon pathogen‐specific empirically‐derived parameters.  相似文献   

2.
The application of the exponential model is extended by the inclusion of new nonhuman primate (NHP), rabbit, and guinea pig dose‐lethality data for inhalation anthrax. Because deposition is a critical step in the initiation of inhalation anthrax, inhaled doses may not provide the most accurate cross‐species comparison. For this reason, species‐specific deposition factors were derived to translate inhaled dose to deposited dose. Four NHP, three rabbit, and two guinea pig data sets were utilized. Results from species‐specific pooling analysis suggested all four NHP data sets could be pooled into a single NHP data set, which was also true for the rabbit and guinea pig data sets. The three species‐specific pooled data sets could not be combined into a single generic mammalian data set. For inhaled dose, NHPs were the most sensitive (relative lowest LD50) species and rabbits the least. Improved inhaled LD50s proposed for use in risk assessment are 50,600, 102,600, and 70,800 inhaled spores for NHP, rabbit, and guinea pig, respectively. Lung deposition factors were estimated for each species using published deposition data from Bacillus spore exposures, particle deposition studies, and computer modeling. Deposition was estimated at 22%, 9%, and 30% of the inhaled dose for NHP, rabbit, and guinea pig, respectively. When the inhaled dose was adjusted to reflect deposited dose, the rabbit animal model appears the most sensitive with the guinea pig the least sensitive species.  相似文献   

3.
4.
The effect of bioaerosol size was incorporated into predictive dose‐response models for the effects of inhaled aerosols of Francisella tularensis (the causative agent of tularemia) on rhesus monkeys and guinea pigs with bioaerosol diameters ranging between 1.0 and 24 μm. Aerosol‐size‐dependent models were formulated as modification of the exponential and β‐Poisson dose‐response models and model parameters were estimated using maximum likelihood methods and multiple data sets of quantal dose‐response data for which aerosol sizes of inhaled doses were known. Analysis of F. tularensis dose‐response data was best fit by an exponential dose‐response model with a power function including the particle diameter size substituting for the rate parameter k scaling the applied dose. There were differences in the pathogen's aerosol‐size‐dependence equation and models that better represent the observed dose‐response results than the estimate derived from applying the model developed by the International Commission on Radiological Protection (ICRP, 1994) that relies on differential regional lung deposition for human particle exposure.  相似文献   

5.
Invasive aspergillosis (IA) is a major cause of mortality in immunocompromized hosts, most often consecutive to the inhalation of spores of Aspergillus. However, the relationship between Aspergillus concentration in the air and probability of IA is not quantitatively known. In this study, this relationship was examined in a murine model of IA. Immunosuppressed Balb/c mice were exposed for 60 minutes at day 0 to an aerosol of A. fumigatus spores (Af293 strain). At day 10, IA was assessed in mice by quantitative culture of the lungs and galactomannan dosage. Fifteen separate nebulizations with varying spore concentrations were performed. Rates of IA ranged from 0% to 100% according to spore concentrations. The dose‐response relationship between probability of infection and spore exposure was approximated using the exponential model and the more flexible beta‐Poisson model. Prior distributions of the parameters of the models were proposed then updated with data in a Bayesian framework. Both models yielded close median dose‐responses of the posterior distributions for the main parameter of the model, but with different dispersions, either when the exposure dose was the concentration in the nebulized suspension or was the estimated quantity of spores inhaled by a mouse during the experiment. The median quantity of inhaled spores that infected 50% of mice was estimated at 1.8 × 104 and 3.2 × 104 viable spores in the exponential and beta‐Poisson models, respectively. This study provides dose‐response parameters for quantitative assessment of the relationship between airborne exposure to the reference A. fumigatus strain and probability of IA in immunocompromized hosts.  相似文献   

6.
This article presents an analysis of postattack response strategies to mitigate the risks of reoccupying contaminated areas following a release of Bacillus anthracis spores (the bacterium responsible for causing anthrax) in an urban setting. The analysis is based on a hypothetical attack scenario in which individuals are exposed to B. anthracis spores during an initial aerosol release and then placed on prophylactic antibiotics that successfully protect them against the initial aerosol exposure. The risk from reoccupying buildings contaminated with spores due to their reaerosolization and inhalation is then evaluated. The response options considered include: decontamination of the buildings, vaccination of individuals reoccupying the buildings, extended evacuation of individuals from the contaminated buildings, and combinations of these options. The study uses a decision tree to estimate the costs and benefits of alternative response strategies across a range of exposure risks. Results for best estimates of model inputs suggest that the most cost‐effective response for high‐risk scenarios (individual chance of infection exceeding 11%) consists of evacuation and building decontamination. For infection risks between 4% and 11%, the preferred option is to evacuate for a short period, vaccinate, and then reoccupy once the vaccine has taken effect. For risks between 0.003% and 4%, the preferred option is to vaccinate only. For risks below 0.003%, none of the mitigation actions have positive expected monetary benefits. A sensitivity analysis indicates that for high‐infection‐likelihood scenarios, vaccination is recommended in the case where decontamination efficacy is less than 99.99%.  相似文献   

7.
Mycobacterium avium subspecies paratuberculosis (MAP) causes chronic inflammation of the intestines in humans, ruminants, and other species. It is the causative agent of Johne's disease in cattle, and has been implicated as the causative agent of Crohn's disease in humans. To date, no quantitative microbial risk assessment (QMRA) for MAP utilizing a dose‐response function exists. The objective of this study is to develop a nested dose‐response model for infection from oral exposure to MAP utilizing data from the peer‐reviewed literature. Four studies amenable to dose‐response modeling were identified in the literature search and optimized to the one‐parameter exponential or two‐parameter beta‐Poisson dose‐response models. A nesting analysis was performed on all permutations of the candidate data sets to determine the acceptability of pooling data sets across host species. Three of four data sets exhibited goodness of fit to at least one model. All three data sets exhibited good fit to the beta‐Poisson model, and one data set exhibited goodness of fit, and best fit, to the exponential model. Two data sets were successfully nested using the beta‐Poisson model with parameters α = 0.0978 and N50 = 2.70 × 102 CFU. These data sets were derived from sheep and red deer host species, indicating successful interspecies nesting, and demonstrate the highly infective nature of MAP. The nested dose‐response model described should be used for future QMRA research regarding oral exposure to MAP.  相似文献   

8.
Dose–response modeling of biological agents has traditionally focused on describing laboratory‐derived experimental data. Limited consideration has been given to understanding those factors that are controlled in a laboratory, but are likely to occur in real‐world scenarios. In this study, a probabilistic framework is developed that extends Brookmeyer's competing‐risks dose–response model to allow for variation in factors such as dose‐dispersion, dose‐deposition, and other within‐host parameters. With data sets drawn from dose–response experiments of inhalational anthrax, plague, and tularemia, we illustrate how for certain cases, there is the potential for overestimation of infection numbers arising from models that consider only the experimental data in isolation.  相似文献   

9.
Dose‐response models are essential to quantitative microbial risk assessment (QMRA), providing a link between levels of human exposure to pathogens and the probability of negative health outcomes. In drinking water studies, the class of semi‐mechanistic models known as single‐hit models, such as the exponential and the exact beta‐Poisson, has seen widespread use. In this work, an attempt is made to carefully develop the general mathematical single‐hit framework while explicitly accounting for variation in (1) host susceptibility and (2) pathogen infectivity. This allows a precise interpretation of the so‐called single‐hit probability and precise identification of a set of statistical independence assumptions that are sufficient to arrive at single‐hit models. Further analysis of the model framework is facilitated by formulating the single‐hit models compactly using probability generating and moment generating functions. Among the more practically relevant conclusions drawn are: (1) for any dose distribution, variation in host susceptibility always reduces the single‐hit risk compared to a constant host susceptibility (assuming equal mean susceptibilities), (2) the model‐consistent representation of complete host immunity is formally demonstrated to be a simple scaling of the response, (3) the model‐consistent expression for the total risk from repeated exposures deviates (gives lower risk) from the conventional expression used in applications, and (4) a model‐consistent expression for the mean per‐exposure dose that produces the correct total risk from repeated exposures is developed.  相似文献   

10.
In many cases, human health risk from biological agents is associated with aerosol exposures. Because air concentrations decline rapidly after a release, it may be necessary to use concentrations found in other environmental media to infer future or past aerosol exposures. This article presents an approach for linking environmental concentrations of Bacillus. anthracis (B. anthracis) spores on walls, floors, ventilation system filters, and in human nasal passages with human health risk from exposure to B. anthracis spores. This approach is then used to calculate example values of risk‐informed concentration standards for both retrospective risk mitigation (e.g., prophylactic antibiotics) and prospective risk mitigation (e.g., environmental clean up and reoccupancy). A large number of assumptions are required to calculate these values, and the resulting values have large uncertainties associated with them. The values calculated here suggest that documenting compliance with risks in the range of 10?4 to 10?6 would be challenging for small diameter (respirable) spore particles. For less stringent risk targets and for releases of larger diameter particles (which are less respirable and hence less hazardous), environmental sampling would be more promising.  相似文献   

11.
On the risk of mortality to primates exposed to anthrax spores.   总被引:1,自引:0,他引:1  
Current events have heightened the importance of understanding the risks from inhalation exposure to small numbers of spores of Bacillus anthracis. Previously reported data sets have not been fully assessed using current understanding of microbial dose response. This article presents an assessment of the reported primate dose-response data. At low doses, the risk to large populations of low doses of inhaled spores (e.g., < 100) is not insignificant.  相似文献   

12.
In order to develop a dose‐response model for SARS coronavirus (SARS‐CoV), the pooled data sets for infection of transgenic mice susceptible to SARS‐CoV and infection of mice with murine hepatitis virus strain 1, which may be a clinically relevant model of SARS, were fit to beta‐Poisson and exponential models with the maximum likelihood method. The exponential model (k= 4.1 × l02) could describe the dose‐response relationship of the pooled data sets. The beta‐Poisson model did not provide a statistically significant improvement in fit. With the exponential model, the infectivity of SARS‐CoV was calculated and compared with those of other coronaviruses. The does of SARS‐CoV corresponding to 10% and 50% responses (illness) were estimated at 43 and 280 PFU, respectively. Its estimated infectivity was comparable to that of HCoV‐229E, known as an agent of human common cold, and also similar to those of some animal coronaviruses belonging to the same genetic group. Moreover, the exponential model was applied to the analysis of the epidemiological data of SARS outbreak that occurred at an apartment complex in Hong Kong in 2003. The estimated dose of SARS‐CoV for apartment residents during the outbreak, which was back‐calculated from the reported number of cases, ranged from 16 to 160 PFU/person, depending on the floor. The exponential model developed here is the sole dose‐response model for SARS‐CoV at the present and would enable us to understand the possibility for reemergence of SARS.  相似文献   

13.
This study developed dose response models for determining the probability of eye or central nervous system infections from previously conducted studies using different strains of Acanthamoeba spp. The data were a result of animal experiments using mice and rats exposed corneally and intranasally to the pathogens. The corneal inoculations of Acanthamoeba isolate Ac 118 included varied amounts of Corynebacterium xerosis and were best fit by the exponential model. Virulence increased with higher levels of C. xerosis. The Acanthamoeba culbertsoni intranasal study with death as an endpoint of response was best fit by the beta‐Poisson model. The HN‐3 strain of A. castellanii was studied with an intranasal exposure and three different endpoints of response. For all three studies, the exponential model was the best fit. A model based on pooling data sets of the intranasal exposure and death endpoint resulted in an LD50 of 19,357 amebae. The dose response models developed in this study are an important step towards characterizing the risk associated with free‐living amoeba like Acanthamoeba in drinking water distribution systems. Understanding the human health risk posed by free‐living amoeba will allow for quantitative microbial risk assessments that support building design decisions to minimize opportunities for pathogen growth and survival.  相似文献   

14.
This study develops dose–response models for Ebolavirus using previously published data sets from the open literature. Two such articles were identified in which three different species of nonhuman primates were challenged by aerosolized Ebolavirus in order to study pathology and clinical disease progression. Dose groups were combined and pooled across each study in order to facilitate modeling. The endpoint of each experiment was death. The exponential and exact beta-Poisson models were fit to the data using maximum likelihood estimation. The exact beta-Poisson was deemed the recommended model because it more closely approximated the probability of response at low doses though both models provided a good fit. Although transmission is generally considered to be dominated by person-to-person contact, aerosolization is a possible route of exposure. If possible, this route of exposure could be particularly concerning for persons in occupational roles managing contaminated liquid wastes from patients being treated for Ebola infection and the wastewater community responsible for disinfection. Therefore, this study produces a necessary mathematical relationship between exposure dose and risk of death for the inhalation route of exposure that can support quantitative microbial risk assessment aimed at informing risk mitigation strategies including personal protection policies against occupational exposures.  相似文献   

15.
Leptospirosis is a preeminent zoonotic disease concentrated in tropical areas, and prevalent in both industrialized and rural settings. Dose‐response models were generated from 22 data sets reported in 10 different studies. All of the selected studies used rodent subjects, primarily hamsters, with the predominant endpoint as mortality with the challenge strain administered intraperitoneally. Dose‐response models based on a single evaluation postinfection displayed median lethal dose (LD50) estimates that ranged between 1 and 107 leptospirae depending upon the strain's virulence and the period elapsed since the initial exposure inoculation. Twelve of the 22 data sets measured the number of affected subjects daily over an extended period, so dose‐response models with time‐dependent parameters were estimated. Pooling between data sets produced seven common dose‐response models and one time‐dependent model. These pooled common models had data sets with different test subject hosts, and between disparate leptospiral strains tested on identical hosts. Comparative modeling was done with parallel tests to test the effects of a single different variable of either strain or test host and quantify the difference by calculating a dose multiplication factor. Statistical pooling implies that the mechanistic processes of leptospirosis can be represented by the same dose‐response model for different experimental infection tests even though they may involve different host species, routes, and leptospiral strains, although the cause of this pathophysiological phenomenon has not yet been identified.  相似文献   

16.
《Risk analysis》2018,38(8):1685-1700
Military health risk assessors, medical planners, operational planners, and defense system developers require knowledge of human responses to doses of biothreat agents to support force health protection and chemical, biological, radiological, nuclear (CBRN) defense missions. This article reviews extensive data from 118 human volunteers administered aerosols of the bacterial agent Francisella tularensis , strain Schu S4, which causes tularemia. The data set includes incidence of early‐phase febrile illness following administration of well‐characterized inhaled doses of F. tularensis . Supplemental data on human body temperature profiles over time available from de‐identified case reports is also presented. A unified, logically consistent model of early‐phase febrile illness is described as a lognormal dose–response function for febrile illness linked with a stochastic time profile of fever. Three parameters are estimated from the human data to describe the time profile: incubation period or onset time for fever; rise time of fever; and near‐maximum body temperature. Inhaled dose‐dependence and variability are characterized for each of the three parameters. These parameters enable a stochastic model for the response of an exposed population through incorporation of individual‐by‐individual variability by drawing random samples from the statistical distributions of these three parameters for each individual. This model provides risk assessors and medical decisionmakers reliable representations of the predicted health impacts of early‐phase febrile illness for as long as one week after aerosol exposures of human populations to F. tularensis .  相似文献   

17.
This study utilizes old and new Norovirus (NoV) human challenge data to model the dose‐response relationship for human NoV infection. The combined data set is used to update estimates from a previously published beta‐Poisson dose‐response model that includes parameters for virus aggregation and for a beta‐distribution that describes variable susceptibility among hosts. The quality of the beta‐Poisson model is examined and a simpler model is proposed. The new model (fractional Poisson) characterizes hosts as either perfectly susceptible or perfectly immune, requiring a single parameter (the fraction of perfectly susceptible hosts) in place of the two‐parameter beta‐distribution. A second parameter is included to account for virus aggregation in the same fashion as it is added to the beta‐Poisson model. Infection probability is simply the product of the probability of nonzero exposure (at least one virus or aggregate is ingested) and the fraction of susceptible hosts. The model is computationally simple and appears to be well suited to the data from the NoV human challenge studies. The model's deviance is similar to that of the beta‐Poisson, but with one parameter, rather than two. As a result, the Akaike information criterion favors the fractional Poisson over the beta‐Poisson model. At low, environmentally relevant exposure levels (<100), estimation error is small for the fractional Poisson model; however, caution is advised because no subjects were challenged at such a low dose. New low‐dose data would be of great value to further clarify the NoV dose‐response relationship and to support improved risk assessment for environmentally relevant exposures.  相似文献   

18.
Environmental Protection Agency (EPA) ambient air quality guidelines are meant to limit long‐term exposures of toxins to safe levels. Unfortunately, there is little guidance for what constitutes a safe level from a one‐time (or very infrequent) short exposure(s). In the case of mercury, a review of the derivation of the EPA ambient air quality standard shows that it implicitly assumes a tissue burden model. The time dependence of the tissue burden is commonly described in terms of a half‐life, a modeling assumption that presumes that the decline in the tissue burden after a single exposure can be approximately described as an exponential decay. In this article, we use a simple exponential tissue burden model to derive a time‐dependent no observable adverse effect level (NOAEL) for mercury concentrations in air. The model predicts that tissue body burden will asymptotically approach the EPA air quality level for long exposure times, and reach workplace standard levels for exposures of a few hours. The model was used along with data on mercury levels from experimental work done by the Maine Department of Environmental Protection to evaluate the risks from a broken compact fluorescent lamp in a residential setting. Mercury levels approached the NOAEL only when the debris was left in an almost sealed room. Normal common‐sense cleaning measures: removal of debris to an outside area, and ventilation of the room for several minutes, reduced exposures to less than 1% of the NOAEL.  相似文献   

19.
Food‐borne infection is caused by intake of foods or beverages contaminated with microbial pathogens. Dose‐response modeling is used to estimate exposure levels of pathogens associated with specific risks of infection or illness. When a single dose‐response model is used and confidence limits on infectious doses are calculated, only data uncertainty is captured. We propose a method to estimate the lower confidence limit on an infectious dose by including model uncertainty and separating it from data uncertainty. The infectious dose is estimated by a weighted average of effective dose estimates from a set of dose‐response models via a Kullback information criterion. The confidence interval for the infectious dose is constructed by the delta method, where data uncertainty is addressed by a bootstrap method. To evaluate the actual coverage probabilities of the lower confidence limit, a Monte Carlo simulation study is conducted under sublinear, linear, and superlinear dose‐response shapes that can be commonly found in real data sets. Our model‐averaging method achieves coverage close to nominal in almost all cases, thus providing a useful and efficient tool for accurate calculation of lower confidence limits on infectious doses.  相似文献   

20.
Cryptosporidium human dose‐response data from seven species/isolates are used to investigate six models of varying complexity that estimate infection probability as a function of dose. Previous models attempt to explicitly account for virulence differences among C. parvum isolates, using three or six species/isolates. Four (two new) models assume species/isolate differences are insignificant and three of these (all but exponential) allow for variable human susceptibility. These three human‐focused models (fractional Poisson, exponential with immunity and beta‐Poisson) are relatively simple yet fit the data significantly better than the more complex isolate‐focused models. Among these three, the one‐parameter fractional Poisson model is the simplest but assumes that all Cryptosporidium oocysts used in the studies were capable of initiating infection. The exponential with immunity model does not require such an assumption and includes the fractional Poisson as a special case. The fractional Poisson model is an upper bound of the exponential with immunity model and applies when all oocysts are capable of initiating infection. The beta Poisson model does not allow an immune human subpopulation; thus infection probability approaches 100% as dose becomes huge. All three of these models predict significantly (>10x) greater risk at the low doses that consumers might receive if exposed through drinking water or other environmental exposure (e.g., 72% vs. 4% infection probability for a one oocyst dose) than previously predicted. This new insight into Cryptosporidium risk suggests additional inactivation and removal via treatment may be needed to meet any specified risk target, such as a suggested 10?4 annual risk of Cryptosporidium infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号