首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Assessing exposures to hazards in order to characterize risk is at the core of occupational hygiene. Our study examined dropped ceiling systems commonly used in schools and commercial buildings and lay‐in ceiling panels that may have contained asbestos prior to the mid to late 1970s. However, most ceiling panels and tiles do not contain asbestos. Since asbestos risk relates to dose, we estimated the distribution of eight‐hour TWA concentrations and one‐year exposures (a one‐year dose equivalent) to asbestos fibers (asbestos f/cc‐years) for five groups of workers who may encounter dropped ceilings: specialists, generalists, maintenance workers, nonprofessional do‐it‐yourself (DIY) persons, and other tradespersons who are bystanders to ceiling work. Concentration data (asbestos f/cc) were obtained through two exposure assessment studies in the field and one chamber study. Bayesian and stochastic models were applied to estimate distributions of eight‐hour TWAs and annual exposures (dose). The eight‐hour TWAs for all work categories were below current and historic occupational exposure limits (OELs). Exposures to asbestos fibers from dropped ceiling work would be categorized as “highly controlled” for maintenance workers and “well controlled” for remaining work categories, according to the American Industrial Hygiene Association exposure control rating system. Annual exposures (dose) were found to be greatest for specialists, followed by maintenance workers, generalists, bystanders, and DIY. On a comparative basis, modeled dose and thus risk from dropped ceilings for all work categories were orders of magnitude lower than published exposures for other sources of banned friable asbestos‐containing building material commonly encountered in construction trades.  相似文献   

2.
Over time, concerns have been raised regarding the potential for human exposure and risk from asbestos in cosmetic‐talc–containing consumer products. In 1985, the U.S. Food and Drug Administration (FDA) conducted a risk assessment evaluating the potential inhalation asbestos exposure associated with the cosmetic talc consumer use scenario of powdering an infant during diapering, and found that risks were below levels associated with background asbestos exposures and risk. However, given the scope and age of the FDA's assessment, it was unknown whether the agency's conclusions remained relevant to current risk assessment practices, talc application scenarios, and exposure data. This analysis updates the previous FDA assessment by incorporating the current published exposure literature associated with consumer use of talcum powder and using the current U.S. Environmental Protection Agency's (EPA) nonoccupational asbestos risk assessment approach to estimate potential cumulative asbestos exposure and risk for four use scenarios: (1) infant exposure during diapering; (2) adult exposure from infant diapering; (3) adult exposure from face powdering; and (4) adult exposure from body powdering. The estimated range of cumulative asbestos exposure potential for all scenarios (assuming an asbestos content of 0.1%) ranged from 0.0000021 to 0.0096 f/cc‐yr and resulted in risk estimates that were within or below EPA's acceptable target risk levels. Consistent with the original FDA findings, exposure and corresponding health risk in this range were orders of magnitude below upper‐bound estimates of cumulative asbestos exposure and risk at ambient levels, which have not been associated with increased incidence of asbestos‐related disease.  相似文献   

3.
The potential for para‐occupational (or take‐home) exposures from contaminated clothing has been recognized for the past 60 years. To better characterize the take‐home asbestos exposure pathway, a study was performed to measure the relationship between airborne chrysotile concentrations in the workplace, the contamination of work clothing, and take‐home exposures and risks. The study included air sampling during two activities: (1) contamination of work clothing by airborne chrysotile (i.e., loading the clothing), and (2) handling and shaking out of the clothes. The clothes were contaminated at three different target airborne chrysotile concentrations (0–0.1 fibers per cubic centimeter [f/cc], 1–2 f/cc, and 2–4 f/cc; two events each for 31–43 minutes; six events total). Arithmetic mean concentrations for the three target loading levels were 0.01 f/cc, 1.65 f/cc, and 2.84 f/cc (National Institute of Occupational Health and Safety [NIOSH] 7402). Following the loading events, six matched 30‐minute clothes‐handling and shake‐out events were conducted, each including 15 minutes of active handling (15‐minute means; 0.014–0.097 f/cc) and 15 additional minutes of no handling (30‐minute means; 0.006–0.063 f/cc). Percentages of personal clothes‐handling TWAs relative to clothes‐loading TWAs were calculated for event pairs to characterize exposure potential during daily versus weekly clothes‐handling activity. Airborne concentrations for the clothes handler were 0.2–1.4% (eight‐hour TWA or daily ratio) and 0.03–0.27% (40‐hour TWA or weekly ratio) of loading TWAs. Cumulative chrysotile doses for clothes handling at airborne concentrations tested were estimated to be consistent with lifetime cumulative chrysotile doses associated with ambient air exposure (range for take‐home or ambient doses: 0.00044–0.105 f/cc year).  相似文献   

4.
This study's objective is to assess the risk of asbestos‐related disease being contracted by past users of cosmetic talcum powder.  To our knowledge, no risk assessment studies using exposure data from historical exposures or chamber simulations have been published. We conducted activity‐based sampling with cosmetic talcum powder samples from five opened and previously used containers that are believed to have been first manufactured and sold in the 1960s and 1970s.  These samples had been subject to conflicting claims of asbestos content; samples with the highest claimed asbestos content were tested.  The tests were conducted in simulated‐bathroom controlled chambers with volunteers who were talc users.  Air sampling filters were prepared by direct preparation techniques and analyzed by phase contrast microscopy (PCM), transmission electron microscopy (TEM) with energy‐dispersive x‐ray (EDX) spectra, and selective area diffraction (SAED).  TEM analysis for asbestos resulted in no confirmed asbestos fibers and only a single fiber classified as “ambiguous.”  Hypothetical treatment of this fiber as if it were asbestos yields a risk of 9.6 × 10?7 (under one in one million) for a lifetime user of this cosmetic talcum powder.  The exposure levels associated with these results range from zero to levels far below those identified in the epidemiology literature as posing a risk for asbestos‐related disease, and substantially below published historical environmental background levels.  The approaches used for this study have potential application to exposure evaluations of other talc or asbestos‐containing materials and consumer products.  相似文献   

5.
Sanding joint compounds is a dusty activity and exposures are not well characterized. Until the mid 1970s, asbestos‐containing joint compounds were used by some people such that sanding could emit dust and asbestos fibers. We estimated the distribution of 8‐h TWA concentrations and cumulative exposures to respirable dusts and chrysotile asbestos fibers for four worker groups: (1) drywall specialists, (2) generalists, (3) tradespersons who are bystanders to drywall finishing, and (4) do‐it‐yourselfers (DIYers). Data collected through a survey of experienced contractors, direct field observations, and literature were used to develop prototypical exposure scenarios for each worker group. To these exposure scenarios, we applied a previously developed semi‐empirical mathematical model that predicts area as well as personal breathing zone respirable dust concentrations. An empirical factor was used to estimate chrysotile fiber concentrations from respirable dust concentrations. On a task basis, we found mean 8‐h TWA concentrations of respirable dust and chrysotile fibers are numerically highest for specialists, followed by generalists, DIYers, and bystander tradespersons; these concentrations are estimated to be in excess of the respective current but not historical Threshold Limit Values. Due to differences in frequency of activities, annual cumulative exposures are highest for specialists, followed by generalists, bystander tradespersons, and DIYers. Cumulative exposure estimates for chrysotile fibers from drywall finishing are expected to result in few, if any, mesothelioma or excess lung cancer deaths according to recently published risk assessments. Given the dustiness of drywall finishing, we recommend diligence in the use of readily available source controls.  相似文献   

6.
Workplace exposures to airborne chemicals are regulated in the U.S. by the Occupational Safety and Health Administration (OSHA) via the promulgation of permissible exposure limits (PELs). These limits, usually defined as eight-hour time-weighted average values, are enforced as concentrations never to be exceeded. In the case of chronic or delayed toxicants, the PEL is determined from epidemiological evidence and/or quantitative risk assessments based on long-term mean exposures or, equivalently, cumulative lifetime exposures. A statistical model was used to investigate the relation between the compliance strategy, the PEL as a limit never to be exceeded, and the health risk as measured by the probability that an individual's long-term mean exposure concentration is above the PEL. The model incorporates within-worker and between-worker variability in exposure, and assumes the relevant distributions to be log-normal. When data are inadequate to estimate the parameters of the full model, as it is in compliance inspections, it is argued that the probability of a random measurement being above the PEL must be regarded as a lower bound on the probability that a randomly selected worker's long-term mean exposure concentration will exceed the PEL. It is concluded that OSHA's compliance strategy is a reasonable, as well as a practical, means of limiting health risk for chronic or delayed toxicants.  相似文献   

7.
The mesothelioma epidemic in the United States, which peaked during the 2000–2004 period, can be traced to high‐level asbestos exposures experienced by males in occupational settings prior to the full recognition of the disease‐causing potential of asbestos and the establishment of enforceable asbestos exposure limits by the Occupational Safety and Health Administration (OSHA) in 1971. Many individuals diagnosed with mesothelioma where asbestos has been identified as a contributing cause of the disease have filed claims seeking compensation from asbestos settlement trusts or through the court system. An individual with mesothelioma typically has been exposed to asbestos in more than one setting and from more than one asbestos product. Apportioning risk for mesothelioma among contributing factors is an ongoing problem faced by occupational disease compensation boards, juries, parties responsible for paying damages, and currently by the U.S. Senate in its efforts to formulate a bill establishing an asbestos settlement trust. In this article we address the following question: If an individual with mesothelioma where asbestos has been identified as a contributing cause were to be compensated for his or her disease, how should that compensation be apportioned among those responsible for the asbestos exposures? For the purposes of apportionment, we assume that asbestos is the only cause of mesothelioma and that every asbestos exposure contributes, albeit differentially, to the risk. We use an extension of the mesothelioma risk model initially proposed in the early 1980s to quantify the contribution to risk of each exposure as a percentage of the total risk. The percentage for each specific discrete asbestos exposure depends on the start and end dates, the intensity, and the asbestos fiber type for the exposure. We provide justification for the use of the mesothelioma risk model for apportioning risk and discuss how to assess uncertainty associated with its application.  相似文献   

8.
An occupational risk assessment for manganese (Mn) was performed based on benchmark dose analysis of data from two epidemiological studies providing dose-response information regarding the potential neurological effects of exposure to airborne Mn below the current Occupational Safety and Health Administration (OSHA) Permissible Exposure Level (PEL) of 5 mg Mn/m3. Based on a review of the scientific evidence regarding the toxicity of Mn, it was determined that the most appropriate measure of exposure to airborne Mn for the subclinical effects measured in these studies is recent (rather than historical or cumulative) concentration of Mn in respirable (rather than total) particulate. For each of the studies analyzed, the individual exposure and response data from the original study had been made available by the investigators. From these two studies benchmark concentrations calculated for eight endpoints ranged from 0.09 to 0.27 mg Mn/m3. From our evaluation of these results, and considering the fact that the subtle, subclinical effects represented by the neurological endpoints tested in these studies do not represent material impairment, we believe an appropriate occupational exposure guideline for manganese would be in the range of 0.1 to 0.3 mg Mn/m3, based on the respirable particulate fraction only, and expressed as an 8-hour time-weighted average.  相似文献   

9.
Smith  Jeffrey S.  Mendeloff  John M. 《Risk analysis》1999,19(6):1223-1234
For carcinogens, this paper provides a quantitative examination of the roles of potency and weight-of-evidence (WOE) in setting permissible exposure limits (PELs) at the U.S. Occupational Safety and Health Administration (OSHA) and threshold limit values (TLVs) at the private American Conference of Governmental Industrial Hygienists (ACGIH). On normative grounds, both of these factors should influence choices about the acceptable level of exposures. Our major objective is to examine whether and in what ways these factors have been considered by these organizations. A lesser objective is to identify outliers, which might be candidates for further regulatory scrutiny. Our sample (N=48) includes chemicals for which EPA has estimated a unit risk as a measure of carcinogenic potency and for which OSHA or the ACGIH has a PEL or TLV. Different assessments of the strength of the evidence of carcinogenicity were obtained from EPA, ACGIH, and the International Agency for Research on Cancer. We found that potency alone explains 49% of the variation in PELs and 62% of the variation in TLVs. For the ACGIH, WOE plays a much smaller role than potency. TLVs set by the ACGIH since 1989 appear to be stricter than earlier TLVs. We suggest that this change represents evidence that the ACGIH had responded to criticisms leveled at it in the late 1980s for failing to adopt sufficiently protective standards. The models developed here identify 2-nitropropane, ethylene dibromide, and chromium as having OSHA PELs significantly higher than predicted on the basis of potency and WOE.  相似文献   

10.
S. E. Holm 《Risk analysis》2013,33(1):161-176
The potential for fiber exposure during historical use of chrysotile‐containing joint compounds (JCC) has been documented, but the published data are of limited use for reconstructing exposures and assessing worker risk. Consequently, fiber concentration distributions for workers sanding JCC were independently derived by applying a recently developed model based on published dust measurements from sanding modern‐day (asbestos‐free) joint compound and compared to fiber concentration distributions based on limited historical measurements. This new procedure relies on factors that account for (i) differences in emission rates between modern‐day and JCC and (ii) the number of fibers (quantified by phase contrast microscopy [PCM]) per mass of dust generated by sanding JCC, as determined in a bench‐scale chamber study using a recreated JCC, that convert respirable dust concentrations to fiber concentrations. Airborne respirable PCM‐fiber concentration medians (and 95% confidence intervals) derived for output variables using the new procedure were 0.26 (0.039, 1.7) f/cm3 and 0.078 (0.013, 0.47) f/cm3, and corresponding total fiber concentrations were 1.2 (0.17, 9.2) f/cm3 and 0.37 (0.056, 2.5) f/cm3, in enclosed and nonenclosed environments, respectively. Corresponding estimates of respirable and total PCM fiber concentrations measured historically during sanding of asbestos‐containing joint compound—adjusted for differences between peak and time‐weighted average (TWA) concentrations and documented analytical preparation and sampling artifacts—were 0.15 (0.019, 0.95) f/cm3 and 0.86 (0.11, 5.4) f/cm3, respectively. The PCM‐fiber concentration distributions estimated using the new procedure bound the distribution estimated from adjusted TWA historical fiber measurements, suggesting reasonable consistency of these estimates taking into account uncertainties addressed in this study.  相似文献   

11.
Upperbound lifetime excess cancer risks were calculated for activities associated with asbestos abatement using a risk assessment framework developed for EPA's Superfund program. It was found that removals were associated with cancer risks to workers which were often greater than the commonly accepted cancer risk of 1 x 10(-6), although lower than occupational exposure limits associated with risks of 1 x 10(-3). Removals had little effect in reducing risk to school populations. Risks to teachers and students in school buildings containing asbestos were approximately the same as risks associated with exposure to ambient asbestos by the general public and were below the levels typically of concern to regulatory agencies. During abatement, however, there were increased risks to both workers and nearby individuals. Careless, everyday building maintenance generated the greatest risk to workers followed by removals and encapsulation. If asbestos abatement was judged by the risk criteria applied to EPA's Superfund program, the no-action alternative would likely be selected in preference to removal in a majority of cases. These conclusions should only be interpreted within the context of an overall asbestos risk management program, which includes consideration of specific fiber types and sizes, sampling and analytical limitations, physical condition of asbestos-containing material, episodic peak exposures, and the number of people potentially exposed.  相似文献   

12.
The purpose of this investigation was to estimate excess lifetime risk of lung cancer death resulting from occupational exposure to hexavalent-chromium-containing dusts and mists. The mortality experience in a previously studied cohort of 2,357 chromate chemical production workers with 122 lung cancer deaths was analyzed with Poisson regression methods. Extensive records of air samples evaluated for water-soluble total hexavalent chromium were available for the entire employment history of this cohort. Six different models of exposure-response for hexavalent chromium were evaluated by comparing deviances and inspection of cubic splines. Smoking (pack-years) imputed from cigarette use at hire was included in the model. Lifetime risks of lung cancer death from exposure to hexavalent chromium (assuming up to 45 years of exposure) were estimated using an actuarial calculation that accounts for competing causes of death. A linear relative rate model gave a good and readily interpretable fit to the data. The estimated rate ratio for 1 mg/m3-yr of cumulative exposure to hexavalent chromium (as CrO3), with a lag of five years, was RR=2.44 (95% CI=1.54-3.83). The excess lifetime risk of lung cancer death from exposure to hexavalent chromium at the current OSHA permissible exposure limit (PEL) (0.10 mg/m3) was estimated to be 255 per 1,000 (95% CI: 109-416). This estimate is comparable to previous estimates by U.S. EPA, California EPA, and OSHA using different occupational data. Our analysis predicts that current occupational standards for hexavalent chromium permit a lifetime excess risk of dying of lung cancer that exceeds 1 in 10, which is consistent with previous risk assessments.  相似文献   

13.
《Risk analysis》2018,38(3):454-471
Over the past 40 years, measured ambient asbestos concentrations in the United States have been higher in urban versus rural areas. The purpose of this study was to determine whether variations in ambient asbestos concentrations have influenced pleural mesothelioma risk in females (who generally lacked historic occupational asbestos exposure relative to males). Male pleural mesothelioma incidence trends were analyzed to provide perspective for female trends. Annual age‐adjusted incidence rates from 1973 to 2012 were obtained from the SEER 9, 13, and 18 databases for urban and rural locations, and standardized rate ratios were calculated. Female rural rates exceeded urban rates in almost half of the years analyzed, although the increases were not statistically significant, which is in line with expectations if there was no observable increased risk for urban locations. In contrast, male urban rates were elevated over rural rates for nearly all years examined and were statistically significantly elevated for 22 of the 40 years. Trend analyses demonstrated that trends for females remained relatively constant over time, whereas male urban and rural incidence increased into the 1980s and 1990s, followed by a decrease/leveling off. Annual female urban and rural incidence rates remained approximately five‐ to six‐fold lower than male urban and rural incidence rates on average, consistent with the comparatively increased historical occupational asbestos exposure for males. The results suggest that differences in ambient asbestos concentrations, which have been reported to be 10‐fold or greater across regions in the United States, have not influenced the risk of pleural mesothelioma.  相似文献   

14.
We review approaches for characterizing “peak” exposures in epidemiologic studies and methods for incorporating peak exposure metrics in dose–response assessments that contribute to risk assessment. The focus was on potential etiologic relations between environmental chemical exposures and cancer risks. We searched the epidemiologic literature on environmental chemicals classified as carcinogens in which cancer risks were described in relation to “peak” exposures. These articles were evaluated to identify some of the challenges associated with defining and describing cancer risks in relation to peak exposures. We found that definitions of peak exposure varied considerably across studies. Of nine chemical agents included in our review of peak exposure, six had epidemiologic data used by the U.S. Environmental Protection Agency (US EPA) in dose–response assessments to derive inhalation unit risk values. These were benzene, formaldehyde, styrene, trichloroethylene, acrylonitrile, and ethylene oxide. All derived unit risks relied on cumulative exposure for dose–response estimation and none, to our knowledge, considered peak exposure metrics. This is not surprising, given the historical linear no‐threshold default model (generally based on cumulative exposure) used in regulatory risk assessments. With newly proposed US EPA rule language, fuller consideration of alternative exposure and dose–response metrics will be supported. “Peak” exposure has not been consistently defined and rarely has been evaluated in epidemiologic studies of cancer risks. We recommend developing uniform definitions of “peak” exposure to facilitate fuller evaluation of dose response for environmental chemicals and cancer risks, especially where mechanistic understanding indicates that the dose response is unlikely linear and that short‐term high‐intensity exposures increase risk.  相似文献   

15.
The U.S. Environmental Protection Agency has begun discussions to consider its assessment of asbestos toxicity related to mineral form and fiber size. Brake workers are typically exposed to short chrysotile fibers. To explore the mesothelioma risk among brake workers, considering other occupational exposures to asbestos, data from a study that was published previously were obtained and the analysis was extended. The National Cancer Institute provided data from a case-control study of mesothelioma. Because many participants with a history of brake work also had employment in other asbestos-related occupations, mesothelioma cases and controls were compared for a history of brake work, controlling for employment in eight occupations with potential asbestos exposure. A stratified analysis was also performed excluding those with any of the eight occupations. Possible interactions between brake work and other occupational exposures related to risk of mesothelioma were also examined. The odds ratio (OR) for employment in brake installation or repair was 0.71 (95% CI: 0.30-1.60) when controlled for insulation or shipbuilding. When a history of employment in any of the eight occupations with potential asbestos exposure was controlled, the OR was 0.82 (95% CI: 0.36-1.80). ORs did not increase with increasing duration of brake work. Exclusion of those with any of the eight exposures resulted in an OR of 0.62 (95% CI: 0.01-4.71) for occupational brake work. There was no evidence of an interaction between brake work and other occupational exposures. These latter analyses were based on small numbers of exposed cases. The results are consistent with the existing literature indicating that brake work does not increase the risk of mesothelioma and adds to the evidence that fiber type and size are important determinants of mesothelioma risk.  相似文献   

16.
Questions persist regarding assessment of workers’ exposures to products containing low levels of benzene, such as mineral spirit solvent (MSS). This study summarizes previously unpublished data for parts‐washing activities, and evaluates potential daily and lifetime cumulative benzene exposures incurred by workers who used historical and current formulations of a recycled mineral spirits solvent in manual parts washers. Measured benzene concentrations in historical samples from parts‐washing operations were frequently below analytical detection limits. To better assess benzene exposure among these workers, air‐to‐solvent concentration ratios measured for toluene, ethylbenzene, and xylenes (TEX) were used to predict those for benzene based on a statistical model, conditional on physical‐chemical theory supported by new thermodynamic calculations of TEX and benzene activity coefficients in a modeled MSS‐type solvent. Using probabilistic methods, the distributions of benzene concentrations were then combined with distributions of other exposure parameters to estimate eight‐hour time‐weighted average (TWA) exposure concentration distributions and corresponding daily respiratory dose distributions for workers using these solvents in parts washers. The estimated 50th (95th) percentile of the daily respiratory dose and corresponding eight‐hour TWA air concentration for workers performing parts washing are 0.079 (0.77) mg and 0.0030 (0.028) parts per million by volume (ppm) for historical solvent, and 0.020 (0.20) mg and 0.00078 (0.0075) ppm for current solvent, respectively. Both 95th percentile eight‐hour TWA respiratory exposure estimates for solvent formulations are less than 10% of the current Occupational Safety and Health Administration permissible exposure limit of 1.0 ppm for benzene.  相似文献   

17.
The Occupational Safety and Health Administration (OSHA) is developing regulations to amend existing standards for occupational exposure to respirable crystalline silica by establishing a new permissible exposure limit as well as a series of ancillary provisions for controlling exposure. This article briefly reviews OSHA's proposed regulatory approach and the statutory authority on which it is based. It then evaluates OSHA's preliminary determination of significant risk and its analysis of the risk reduction achievable by its proposed controls. It recognizes that OSHA faces multiple challenges in devising a regulatory approach that reduces exposures and health risks and meets its statutory goal. However, the greatest challenge to reducing risks associated with silica exposure is not the lack of incentives (for either employers or employees) but rather lack of information, particularly information on the relative toxicity of different forms of silica. The article finds that OSHA's proposed rule would contribute little in the way of new information, particularly since it is largely based on information that is at least a decade old—a significant deficiency, given the rapidly changing conditions observed over the last 45 years. The article concludes with recommendations for alternative approaches that would be more likely to generate information needed to improve worker health outcomes.  相似文献   

18.
Methyl t -butyl ether (MTBE) is a gasoline additive that has appeared in private wells as a result of leaking underground storage tanks. Neurological symptoms (headache, dizziness) have been reported from household use of MTBE-affected water, consistent with animal studies showing acute CNS depression from MTBE exposure. The current research evaluates acute CNS effects during bathing/showering by application of physiologically-based pharmacokinetic (PBPK) techniques to compare internal doses in animal toxicity studies to human exposure scenarios. An additional reference point was the delivered dose associated with the acute Minimum Risk Level (MRL) for MTBE established by the Agency for Toxic Substances and Disease Registry. A PBPK model for MTBE and its principal metabolite, t -butyl alcohol (TBA) was developed and validated against published data in rats and humans. PBPK analysis of animal studies showed that acute CNS toxicity after MTBE exposure can be attributed principally to the parent compound since the metabolite (TBA) internal dose was below that needed for CNS effects. The PBPK model was combined with an exposure model for bathing and showering which integrates inhalation and dermal exposures. This modeling indicated that bathing or showering in water containing MTBE at 1 mg/L would produce brain concentrations ˜1000-fold below the animal effects level and twofold below brain concentrations associated with the acute MRL. These findings indicate that MTBE water concentrations of 1 mg/L or below are unlikely to trigger acute CNS effects during bathing and showering. However, MTBE's strong odor may be a secondary but deciding factor regarding the suitability of such water for domestic uses.  相似文献   

19.
Risk‐based, background, and laboratory quantitation limit‐derived standards for carcinogenic polycyclic aromatic hydrocarbons (cPAHs) in residential and nonresidential soils vary across the northeast region of the United States. The magnitude and extent of this variation, however, have not been systematically studied. This article examines the technical basis and methodology used by eight northeastern states in the development of risk‐based screening values, guidelines, and standards for cPAHs in soils. Exposure pathways, human receptors, algorithms, and input variables used by each state in the calculation of acceptable human health risks are identified and reviewed within the context of environmental policy and regulatory impacts. Emphasis is placed on a comparative analysis of multipathway exposures (incidental ingestion, dermal contact, and particulate inhalation) and key science‐policy decisions that have led to the promulgation and adoption of different exposure criteria for cPAHs in the Northeast. More than 425 data points and 20 distinct exposure factors across eight state programs, 18 age subgroups, six activity scenarios, and three exposure pathways were systematically evaluated. Risk‐based values for one state varied either above or below risk‐based, background or laboratory quantitation limit‐derived standards of another state for the same cPAH and receptor. Standards for cPAHs in soils were found to differ significantly across the northeast region—in some cases, by one or two orders of magnitude. While interstate differences can be expected to persist, future changes in federal guidance could mean a shift in risk drivers, compliance status, or calculated cumulative risks for individual properties impacted by PAH releases.  相似文献   

20.
On incidental dermal exposure to chemicals in water, a key exposure factor is the amount of water adhering to skin. Although soil adherence factors have been developed for risk assessment, measurements of water adherence on human skin have not been described. In the Environmental Protection Agency's (EPA's) dermal risk assessment guidance, dermal dose from environmental exposures is based upon the flux rate across the skin, which assumes that an unlimited amount of chemical is available for absorption. This assumption is applicable to certain exposure scenarios such as swimming and bathing. However, exposures to contaminated water frequently involve scenarios where the available chemical is limited by the amount of water adhering to the skin, for example, during accidental splashes. We conducted studies in human volunteers to investigate water adherence per unit area of skin after brief contact with water. In two sets of experiments, either water was applied with a micropipette to 10‐cm2 areas of the lower leg, foot, and hand, or the foot and hand were briefly immersed in water. In males, using a micropipette, water adherence ranged from 1.93 (foot) to 7.13 μL/cm2 (lower leg). In females, it ranged from 1.10 (lower leg) to 4.83 μL/cm2 (hand). Hand and foot immersion resulted in relatively higher values of 6.89 and 5.17 μL/cm2, respectively, in males, and 5.40 and 6.39 μL/cm2 in females. Water adherence was affected by amount of body hair and type of exposure. Water adherence factors can be used to calculate the applied dose per unit area for exposures involving intermittent water contact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号