首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant-based stormwater management systems such as green roofs are typically composed exclusively of vascular plants. Yet, mosses have several desirable properties that could warrant their more widespread use in green roof applications. In natural systems mosses are important primary colonizers of bare ground, and their establishment improves water storage and provides numerous soil benefits including carbon and nitrogen sequestration. Additionally, mosses often facilitate the establishment and survival of vascular plants at otherwise environmentally harsh or stressful sites. Despite their potential value, few studies have investigated the functional performance of mosses on green roofs. In this study we evaluated the establishment success and potential stormwater performance of three candidate moss species. We also directly compared the runoff and thermal characteristics of replicate moss covered green roofs to vascular planted and bare roofs. Candidate mosses had high water holding capacities, storing 8–10 times their weight in water compared to only 1.3 times for typical green roof medium. Mock-up roof sections composed of mosses and medium had delayed and reduced runoff flows relative to medium only sections, although the magnitude of these effects varied with moss species. In field trials all three mosses survived a harsh rooftop environment with limited summer irrigation, although lateral growth after one year was minimal. Green roofs planted solely with Racomitrium canescens had between 12–24% higher stormwater retention than vascular or medium only roofs. Moss cover also ameliorated temperature fluctuations on green roofs. Hourly heating rates were buffered to a similar degree (less than half that of surface temperatures) 5 cm below the surface of both moss covered and medium only roofs. In contrast, cooling under the surface of the moss roof was nearly 6 times faster than under the medium only roof. These results demonstrate the potential for mosses to be valuable components of green roofs, either in combination with vascular plants or planted exclusively.  相似文献   

2.
Urban atmospheres can have high concentrations of particulate organic carbon (oC) but the rate and fate oC deposition in near-urban ecosystems are rarely quantified. We collected atmospheric particulate matter in Phoenix, AZ and applied these samples to Sonoran Desert soils in a series of laboratory incubation experiments. The addition of fine particulate matter (<2.5 μm aerodynamic diameter) increased microbial respiration in soils collected from the interspaces between desert shrubs. The increase in soil respiration was equivalent to 25% to 30% of the added oC. In contrast, we did not detect increases in respiration when coarse particulate matter (>2.5 μm aerodynamic diameter) was added to interspace soils, suggesting that coarse particulate oC is recalcitrant to microbial decomposition. Due to comparatively higher background levels of C mineralization, we rarely detected changes in microbial respiration when fine or coarse particulate oC was added to soils collected beneath shrub canopies. We measured total atmospheric C concentrations within and surrounding Phoenix and, using inferential methods, estimated rates of deposition that ranged from 0.02 to 0.58 mg C m−2 d−1 for fine particles and from 0 to 6.15 mg C m−2 d−1 for coarse particles. Results show that fine atmospheric particulate matter deposited at low rates downwind of Phoenix is a labile oC substrate for soil heterotrophs. In contrast, oC deposited at higher rates as coarse particulate matter may accumulate in soils due to slow microbial decomposition rates.  相似文献   

3.
Stormwater ponds now comprise a significant portion of standing water in urban areas. These ponds act to sequester excess run-off and pollutants, such as road salt deicers. While these man-made ponds are not intended to serve as freshwater ecosystems, it is becoming clear that they do provide habitat for many organisms, but we know little of their ecosystem structure, function and interactions with pollutants. From April through June 2009, we surveyed 8 stormwater ponds in the Red Run Watershed, Baltimore County, Maryland, USA to describe patterns in aquatic food webs associated with a gradient in road salt inputs. Periphyton, phytoplankton and zooplankton samples were collected from each pond every 4–6 weeks. Specific conductance, a measure of chloride salt loading, among the 8 ponds varied widely throughout the survey, ranging from 99 μS cm−1 to 19,320 μS cm−1. Low (average = 404 +/− 82.6 (SE) μS cm−1) and medium (average = 1749 +/− 267 (SE) μS cm−1) conductance ponds had lower algal biomass and higher densities of zooplankton taxa relative to high (average = 7231 +/− 2143 (SE) μS cm−1) conductance ponds, which were largely devoid of all zooplankton through the end of May. The observed decline in zooplankton density along an increasing chloride gradient is consistent with experimental results of road deicer effects, suggesting algal resources are possibly freed from grazing pressure as zooplankton consumers are negatively impacted by road salt exposure. Our results highlight the potential for both direct and indirect effects of road deicers on freshwater communities.  相似文献   

4.
Urban green spaces provide important ecosystem services, such as amenity, biodiversity, productivity, climate amelioration, hydrological and biogeochemical cycling. Intensively managed urban gardens can sequester carbon through vegetation growth and soil C increase, but may experience nitrous oxide (N2O) emissions and reduced soil methane (CH4) uptake from irrigation and fertiliser use. Soil atmosphere exchange of N2O, CH4 and carbon dioxide (CO2) was measured in lawn and wood chip mulched garden areas in Melbourne, Australia in winter, spring and summer under various water and fertiliser regimes. Gas exchange before and after lawn fertiliser application was measured continuously for three weeks using an automated chamber system. Applying fertiliser led to a peak N2O emission of >60 μg N m−2 h−1, but overall only weekly irrigation (10 mm) significantly increased mean soil N2O emissions above that in other treatments. Under mulch, mean soil N2O emissions (14.0 μg N m−2 h−1) were significantly smaller than from irrigated lawn (27.9 μg N m−2 h−1), whereas mean soil CH4 uptake under mulch (−30.7 μg C m−2 h−1) was significantly greater (p < 0.01) than in any lawn treatment. Lawns were either a weak CH4 sink or source. Soil C density (0–25 cm) under mulch (12.5 kg C m−2) was greater that under lawn (8.0 kg C m−2). On a carbon dioxide equivalent (CO2-e) basis, soil N2O emissions offset the benefits of soil CH4 uptake. Mulched garden areas provide greatest C sequestration potential in soil and vegetation and the smallest non-CO2 emissions, as soil CH4 uptake offsets a large fraction of soil N2O emissions. Results of this study suggest that reducing the irrigation and fertiliser application to lawns can help mitigate GHG emissions from urban garden systems, and increasing the area of mulched perennial garden beds can also provide net GHG benefits; however, this needs to be tested in other garden systems with different soil types and environmental conditions.  相似文献   

5.
Green roofs are emerging engineered ecosystems that provide multiple benefits, but many are constructed with nutrient-rich substrate and have been found to leach out high levels of phosphorus (P) in runoff. It is unclear, however, how long green roofs act as sources of P or what mechanisms are responsible for these net losses. We measured P concentrations in runoff water over 4 years from a 1–5 year old extensive green roof in Cincinnati, OH, USA, produced a model to predict runoff P levels into the future, and validated predictions using runoff from 2 nearby extensive green roofs. P concentrations in runoff from the focal green roof were on par with heavily fertilized agroecosystems and displayed strong seasonal dynamics and a rapid decline over the 4-year study. Runoff measurements and changes in substrate P content over a 2-year period were used to estimate a mass balance for green roof P. P loss from the substrate was substantial (4.55 ± 2.3 g P/m2/yr), but only a small portion of the loss was attributable to leaching of P in runoff (0.19–0.65 g P/m2/yr). Missing P may be attributed to a combination of plant uptake and altered P form and binding strength, but further research is needed to precisely identify the mechanisms of P depletion. Our results also suggest that these and similar extensive green roofs are likely to act as environmentally significant sources of P for 10 or more years following roof installation, highlighting the need for reductions in initial substrate P content.  相似文献   

6.
Media depth influences Sedum green roof establishment   总被引:1,自引:1,他引:0  
Species selection and initial establishment of plants is critical for long term survival and health of green roofs. Plants that can withstand harsh environmental conditions and provide rapid coverage on extensive green roofs can reduce erosion, limit weed invasion, and provide a more aesthetically pleasing roof to satisfy customers. This study evaluated the effect of green roof substrate depth on initial establishment of 12 Sedum species in a Midwestern US climate. Plugs of 12 Sedum species were planted on 8 June 2005 and evaluated bi-weekly until first frost for absolute cover (AC) using a stainless steel point-frame transect. Most species exhibited greater growth and coverage at a depth of 7.0 and 10.0 cm relative to 4.0 cm. AC was highest for Sedum sarmentosum at all depths, but this species may be too aggressive. Other suitable species include Sedum floriferum, Sedum stefco, and Sedum spurium ‘John Creech’. In general, species that are less suitable are Sedum ‘Angelina’, Sedum cauticola ‘Lidakense’, Sedum ewersii, Sedum ochroleucum, and Sedum reflexum ‘Blue Spruce’. For the species tested, a minimum of 7.0 cm is highly recommended. With shallower substrates, S. sarmentosum and S. stefco will provide the fastest coverage. This paper is a portion of a M.S. Thesis submitted by K.L. Getter.  相似文献   

7.
The purpose of this study was to investigate the effect of green roofs and green walls on air pollution in urban Toronto. The research looked at the synergistic effects on air pollution mitigation of different combinations of vegetation by manipulating quantities of trees, shrubs, green roofs and green walls in the study area. The effects of these manipulations were simulated with the Urban Forest Effects (UFORE) model developed by the USDA Forest Service Northeastern Regional Station. While UFORE contains several modules, Module—D quantifies the levels of air pollution for contaminants such as NO2, S02, CO, PM10 and ozone as well as hourly pollution removal rates and the economic value of pollutant removal. Six vegetation scenarios were developed within the Toronto study area to compare different subsets of vegetation and their effect on air contaminants. Results of the study indicate that grass on roofs (extensive green roofs) could augment the effect of trees and shrubs in air pollution mitigation, placing shrubs on a roof (intensive green roofs) would have a more significant impact. By extension, a 10–20% increase in the surface area for green roofs on downtown buildings would contribute significantly to the social, financial and environmental health of all citizens.
Brad BassEmail:
  相似文献   

8.
Currently the majority of vegetation used on shallow extensive green roofs are species of Sedum, which are able to survive in the harsh green roof environment. While mosses frequently colonize green roofs in Europe, intentional planting of mosses on green roofs is less common, especially in North America. Mosses may contribute to the ecosystem services provided by green roofs, and may act as facilitators of vascular plants. This study examined the effect of three different moss species on soil temperature, water loss rates and the growth of neighbouring vascular plant species. Overall, the presence of mosses in this experiment impacted the neighbour species differently, suggesting that mosses are best used in particular species combinations. One species of grass showed a net benefit of moss neighbours, suggesting that facilitation may be operating. Mosses reduced soil temperature relative to bare substrates; net evapotranspiration of green roof modules planted with mosses varied depending on the identity of moss and neighbour species.  相似文献   

9.
Wading birds (i.e, Ardeidae: herons, egrets, and bitterns) are a guild of waterbirds that forage in coastal habitats which in the US and Europe are often located in close proximity to urban centers. However, the use of urban marine habitats may have consequences for bird populations, as birds can be subject to stress from increased levels of passive and active human disturbance. We examined the effects of human disturbance, available foraging habitat, and prey abundance on wading bird density and species richness at 17 urban coastal sites in Narragansett Bay, Rhode Island USA. The sites represented a gradient of immediately adjacent residential and commercial land use (e.g., 0.0–67.7% urban land use within a 30.5 m buffer of the sites) within an urban matrix (i.e., all sites were located within a suburban center with a population of about 85,000 people). Wading bird density (0.62 ± 0.12 birds ha−1) and species richness (average 4.49 ± 0.37 species across all sites) were not influenced by passive human disturbance as measured by the extent of urban land surrounding a site. However, wading bird density and species richness both decreased significantly as active disturbance (i.e., number of boats moored or docked upstream of the site) increased (r = −0.56, F = 6.85, p = 0.019 and r = −0.73, F = 16.6, p = 0.001, respectively). In addition, both density (r = 0.72, F = 16.2, p = 0.001) and species richness (r = 0.72, F = 16.2, p = 0.001) increased concomitantly with a prey index that combines the density of fish and invertebrates on which the birds feed with the amount of available shallow water foraging habitat at a site. Our results suggest that wading birds i) may not be negatively affected by urban land surrounding estuarine foraging areas in and of itself; and ii) may be utilizing urban areas in the absence of high levels of active disturbance to take advantage of potentially enhanced prey resources. In the case where the benefits of foraging at a site outweigh the costs related to human disturbance, urban marine habitats may need to be considered for restoration or protection from further increases in active human disturbance.  相似文献   

10.
Designed soils are used in specialized urban areas, such as under sidewalks or on roof-tops. These substrates have coarse light-weight aggregates to meet load-bearing specifications with soil in voids for rooting medium. A full-factorial microcosm approach was used to study Lumbricus terrrestris (two adult worms added and no-worms added), compaction (bulk density of 1.95 and 1.48 g cm−3), and litter (litter and no-litter additions) in a designed soil. Earthworm biomass, soil physical, chemical, and biological properties, anion leaching and surface C efflux was measured on days 0, 7, 14, 21, 28, 72, 112, and 140. Earthworms decreased bulk density in compacted soil, but did not impact density of un-compacted soil. Earthworm biomass increased days 7 to 14, but declined from days 28 to 140, likely as result of the abrasiveness of the aggregate component and relatively shallow depth of the soil (25 cm). During the period of increasing earthworm biomass, surface C efflux, microbial biomass N, soil Ca2+ and NH4+ increased with earthworms. During the period of declining earthworm biomass, surface C efflux, microbial biomass N, soil Ca2+ and NO3, and leachate NO3 increased, and soil pH decreased with earthworms. While alive and dying, Lumbricus terrestris stimulated microbial activity and biomass and nutrient availability, but an apparent shift to nitrification was observed as earthworm biomass declined. The results show Lumbricus terrestris to improve designed soil properties for plants, but the improvements may be short-lived due to the inability of these earthworms to survive in the designed soil.  相似文献   

11.
The relative contribution of substrate depth and vegetation type on temperature mitigation and stormwater runoff reduction was studied in an experimental green roof in North eastern Italy. Two substrate depths (120 and 200?mm) and two vegetation types (herbaceous plants and shrubs, respectively) were used, and compared to control modules with similar substrate depths but left bare of vegetation. Experimental observations showed that: a) green roofs substantially reduce thermal load over the rooftop, with significant effects of substrate depth and no apparent impact of vegetation type; b) thermal effects are strongly influenced by substrate water content; c) green roofs strongly reduce water runoff with significant substrate x vegetation effects. Our data suggest that green roof design addressed to optimization of the thermal functions should take into account adequate planning of substrate depth. Moreover, our data show that vegetated modules out-competed medium-only ones in terms of runoff reduction capacity, in accordance with some previous studies. Both shrub-vegetated and herbaceous modules intercepted and stored more than 90% rainfall during intense precipitation events, with no significant difference between the two vegetation types despite different substrate depths.  相似文献   

12.
Using a spatially extensive urban database constructed from the Maryland Biological Stream Survey (MBSS), we describe the relationships of nutrients in small-order streams to eight defined categories of percent catchment urbanization, correlations between chloride and conductivity in urban streams, and relationships between nutrients and chloride with two Maryland-specific indices of biotic integrity for benthic macroinvertebrates and fish assemblages. Stream nutrients become elevated with increasing percent catchment urbanization, followed by increases in all four measured nitrogen species and total phosphorus at catchment urbanization levels greater than 10%. There was a strong collinear relationship (r 2 = 0.90) between chloride and conductivity (trimeans) across all eight urbanization classes, where Cl (mg/L) = −0.397 + 0.188*conductivity (μS/cm). Critical values for all water quality parameters with the two Maryland biological indices were derived using quantile regression, with significant regressions developed for 11 of 16 water quality parameters and the two biotic indices. For nitrate (NO3-N), the critical thresholds between fair and poor stream quality for the two Maryland biological indices were 0.83 mg/L (benthic macroinvertebrate assemblages) and 0.86 mg/L (fish assemblages). Increasing stream nutrient and chloride levels, associated with widespread catchment urbanization intensity, now affect many small streams in Maryland, with implications for decreasing water quality in major tributaries and the Chesapeake Bay.  相似文献   

13.
Despite the fact that green roofs are based upon living systems, the majority of published research literature contains little specific information on the contribution of plants to the various functions and properties of green roofs. Furthermore, there has been little investigation of the influence of the composition of vegetation on the physical properties of a green roof system. This paper reviews previously published material that throws light on the role of vegetation composition on green roof function, with particular regard to rainwater runoff. Two experiments at the University of Sheffield, UK, are considered in detail: (a) An outdoor lysimeter experiment that investigated the quantity of runoff from trays containing 100 mm of growing medium and combinations of grasses and forbs, together with bare substrate, and (b) a greenhouse experiment using simulated rainfall to estimate the amount of rainfall intercepted by different vegetation types. In both cases the vegetation ranged from simple monocultures of forbs and grasses through to complex mixtures of both. In both cases, the composition of the vegetation was found to significantly affect both the amount of water retained and released from the system.  相似文献   

14.
Fifteen herbaceous perennial grass and herb species were planted into experimental green roofs in spring 2001. The species differed widely in their origins, heights, flowering times, life spans and growth forms but all were typical of dry and nutrient-stressed habitats. Three individuals of each species of a standardised size were randomly assigned to a planting grid at 20 cm apart in each experimental replicate plot at substrate depth of either 100 or 200 mm. Each treatment was replicated three times. During each growing season, the mean height and spread of each individual was recorded, together with flowering performance and % vegetation cover. In addition the numbers and % covers of all spontaneous colonised species were recorded. Greatest survival, diversity, size and flowering performance of planted species occurred at 200 mm depth. Bare ground and moss cover was greatest at 100 mm, as was diversity of colonising species. Differences between the early years and the final years of the experiment indicate the need for long-term monitoring of green roofs in addition to short-term experiments.  相似文献   

15.
Over the last few years, the estimation of energy expenditure with accelerometers has become more and more accurate due to improvements in sensor technology. Significant enhancement could be reached by model-based estimation regarding different activity types. The kmsMove-sensor (movisens GmbH, Karlsruhe, Germany) is a device that is used to compute human energy expenditure using motion-dependent calculation models. It is outfitted with an accelerometer to measure body acceleration during certain movements and activities. To validate its accuracy, the sensor was compared to indirect calorimetry as criterion measure. For this experiment, nine subjects (all males, age 46.4 ± 10.9 years, 28–64 years) were equipped with the kmsMove-sensor as well as a portable indirect calorimeter and their energy consumption was measured over a time period of 100 min. Additionally, the energy consumption of seven out of the above-mentioned nine subjects was measured over an average of 7 h. The measurements took place in a rehabilitation clinic, where the subjects completed their regular daily rehabilitation activities. An analysis of the data revealed ICCs between the kmsMove-sensor and indirect calorimetry for the time period of 100 min of 0.82 (0.38–0.96; p = 0.003) and for an averaged measuring time of 7 h of 0.81 (0.22–0.97; p = 0.01). Furthermore, a Bland–Altman analysis for the time period of 100 min led to a difference of the means of 4.3 kcal (limits of agreement: −94.3 and 102.9 kcal) and for the time period of an average of 7 h to −14.0 kcal (limits of agreement: −320.0 and 292.0 kcal). These findings indicate that the kmsMove-sensor is an appropriate measuring device with relatively good accuracy to assess human energy expenditure in rehabilitation patients. However, this study has some limiting aspects (small sample size, artificial setting) which could influence validity.  相似文献   

16.
Green roofs have been described as technical solutions to overcome urban environmental problems, such as decrease of vegetation and stormwater management. In the present study, two pilot 20 m2 extensive green roofs were implemented in an urban Mediterranean region, at a 1st storey on a warehouse building structure, in order to test the adequacy of different substrates for supporting aromatic plants (Lavandula dentata, Helichrysum italicum, Satureja montana, Thymus caespititius and Thymus pseudolanuginosus). Experimental substrates included expanded clay and granulated cork as main components, supplemented with organic matter and crushed egg shell. A commercial substrate that obeys to FLL guidelines was also tested. Plant growth was assessed and compared within each platform. All experimental substrates proved to be adequate for vegetation growth, with the combination of 70% expanded clay, 15% organic matter and 15% crushed egg shell showing the best results regarding plant establishment and growth over time. Water runoff quality parameters - turbidity, pH, conductivity, NH4 +, NO3 ?, PO4 3? - met standard values required for water reuse for non-potable purposes, such as toilet flushing or irrigation. Preliminary qualitative thermographic measurements comparing surface temperature of different plant species and the substrate showed that temperature of vegetation surface was lower than substrate, reinforcing green roofs benefits of lowering air temperature in their surroundings. The present research shows that aromatic vegetation combined with clay substrates are suitable for green roofs located in countries of the Mediterranean region.  相似文献   

17.
Ailanthus altissima is an invasive, dioecious deciduous tree common at the interface between urban and rural areas in the mid-Atlantic region, U.S.A. To examine spatial patterns of abundance and associations with land use type, we mapped all mature female trees in nine 89.5 ha plots (805.5 ha total area) across a typical urban-to-rural land use gradient using aerial images obtained via remote sensing supplemented by detailed ground referencing. Rural plots were dominated by forest and had the lowest density of mature females (0.007 females ha−1); urban and suburban plots did not differ significantly in mean density (0.37 females ha−1 vs. 0.34 females ha−1, respectively). Individuals in urban plots were more evenly distributed, but were not associated with a wider variety of land uses and were closer to roads or openings than those in suburban plots. Given less available habitat per unit area in urban than in suburban environments, these patterns suggest that Ailanthus fits the profile of an invasive species that may be proliferating outward from urban centers. With continued disturbances associated with development in the suburban areas, and timber harvesting in the rural areas, further spread of Ailanthus seems likely.  相似文献   

18.
The purpose of this paper is to find out whether serum oxidizability potential measured before an exercise test (EXT) correlates with age and ischemic heart disease severity. Oxidizability potential was determined in 3 age groups, in gr. I patients < 45 years, in gr. II age range = 45 - 70years {\hbox{range}} = {45} - {7}0{\hbox{years}} , and in gr. III patients > 70 years. Included subjects had chronic ischemic heart disease (IHD) and underwent a symptom-limited EXT upon initiation of a cardiac rehabilitation program. The thermo-chemiluminescence (TCL) assay was used to assess serum oxidizability potential. This assay is based on heat-induced oxidation of serum, leading to the formation of electronically excited species in the form of unstable carbonyls, which further decompose into stable carbonyls and light energy (low chemiluminescence). Measured photons emission is represented by a kinetic curve which is described by its amplitude and slope (=ratio). We assessed the correlations of TCL ratio with age, exercise duration, metabolic equivalents (METS), maximal heart rate (mHR), maximal systolic BP, >1 mm S-T depression, diabetes, hypertension, smoking, left ventricular ejection fraction (LVEF)> or <40%, previous myocardial infarction, and aorto-coronary bypass surgery. A high TCL ratio (%) correlated well with METS (r = 0.82), mHR (r = 0.77) and with exercise-induced S-T segment shift (r = 0.86, p < 0.05). A lower serum oxidizability potential, expressed as a low TCL ratio, thus suggestive of a previous high oxidative stress, was found in the two older age groups compared to gr. I (<45 years), p = 0.041, and in particular, in gr. III patients with low LVEF%. The TCL ratio (%) in gr. III was 188.7 ± 14.5, 192 ± 17 in gr. II, and 214 ± 13 in gr. I (p < 0.05), and was 166 ± 13.1 in gr. III with LVEF < 45% as compared to 271 ± 15.7 in gr. I patients with LVEF > 45% (p < 0.01). A trend for lower TCL ratio (%) was found in diabetic, hypertensive, and post-coronary bypass surgery patients. A paradoxically low TCL ratio (low oxidizability potential) was observed in patients without S-T depression compared to patients with S-T depression (189 ± 22 vs. 201 ± 15, p = NS), due to the fact these patients had a much lower LVEF% and a lower exercise capacity. Serum oxidizability potential is associated with age, EXT parameters, results, and IHD severity. TCL ratio is an “easy-to-measure marker” that might be incorporated into risk assessment and prediction in aged IHD patients.  相似文献   

19.
Fox squirrels in an urban environment had an average litter size of 2.83 (95% CI 2.5, 3.16) which was similar to rural populations. Nonetheless, the proportion of squirrels reproductively active during the summer/fall breeding season (0.73) and annually (spring + summer/fall) was higher (1.23) than previously recorded for non-manipulated rural populations. The average monthly survival rate () of urban juvenile fox squirrels during the first 14 weeks of life was higher than reported for adult populations in the area. High rates of reproduction and juvenile survival yielded high juvenile to adult ratios (juveniles/adults) averaging 0.44. Retention of juveniles after 6 months (15%) was significantly less (χ 2 = 7.24, p = 0.0071) than adults/subadults (40%). Results suggest that the urban environment provides quality habitat for fox squirrels and fox squirrels in urban environments have the potential to be a source population for surrounding suburban and rural environments.  相似文献   

20.
Green roofs have the potential to retain stormwater on the roof surface and lower the thermal loading on buildings. Because of this, the greatest environmental benefits from green roofs might be achieved in subtropical climates characterized by high temperatures and intense rain events. There is, however, little research to support this. In a replicated study in Texas, we compared the performance of six different extensive green roof designs vegetated with native species, to non-reflective (black) roofs, and reflective (white) roofs. Preliminary hydrologic and thermal profile data indicated not only differences between green and non-vegetated roofs, but also among green roof designs. Maximum green roof temperatures were cooler than conventional roofs by 38°C at the roof membrane and 18°C inside air temperature, with little variation among green roofs. Maximum run-off retention was 88% and 44% for medium and large rain events but some green roof types showed very limited retention characteristics. These data demonstrate indicate that: 1. Green roofs can greatly affect the roof temperature profile—cooling surface layers and internal space on warm days. 2. Green roofs can retain significant amounts of rainfall, this is dependent on the size of the rain event and design and can fail if not designed correctly. We suggest that as green roofs vary so much in their design and performance, they must be designed according to specific goals rather than relying on assumed intrinsic attributes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号