首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Importance sampling and Markov chain Monte Carlo methods have been used in exact inference for contingency tables for a long time, however, their performances are not always very satisfactory. In this paper, we propose a stochastic approximation Monte Carlo importance sampling (SAMCIS) method for tackling this problem. SAMCIS is a combination of adaptive Markov chain Monte Carlo and importance sampling, which employs the stochastic approximation Monte Carlo algorithm (Liang et al., J. Am. Stat. Assoc., 102(477):305–320, 2007) to draw samples from an enlarged reference set with a known Markov basis. Compared to the existing importance sampling and Markov chain Monte Carlo methods, SAMCIS has a few advantages, such as fast convergence, ergodicity, and the ability to achieve a desired proportion of valid tables. The numerical results indicate that SAMCIS can outperform the existing importance sampling and Markov chain Monte Carlo methods: It can produce much more accurate estimates in much shorter CPU time than the existing methods, especially for the tables with high degrees of freedom.  相似文献   

2.
Heng Lian 《Statistics》2013,47(6):777-785
Improving efficiency of the importance sampler is at the centre of research on Monte Carlo methods. While the adaptive approach is usually not so straightforward within the Markov chain Monte Carlo framework, the counterpart in importance sampling can be justified and validated easily. We propose an iterative adaptation method for learning the proposal distribution of an importance sampler based on stochastic approximation. The stochastic approximation method can recruit general iterative optimization techniques like the minorization–maximization algorithm. The effectiveness of the approach in optimizing the Kullback divergence between the proposal distribution and the target is demonstrated using several examples.  相似文献   

3.
Two new implementations of the EM algorithm are proposed for maximum likelihood fitting of generalized linear mixed models. Both methods use random (independent and identically distributed) sampling to construct Monte Carlo approximations at the E-step. One approach involves generating random samples from the exact conditional distribution of the random effects (given the data) by rejection sampling, using the marginal distribution as a candidate. The second method uses a multivariate t importance sampling approximation. In many applications the two methods are complementary. Rejection sampling is more efficient when sample sizes are small, whereas importance sampling is better with larger sample sizes. Monte Carlo approximation using random samples allows the Monte Carlo error at each iteration to be assessed by using standard central limit theory combined with Taylor series methods. Specifically, we construct a sandwich variance estimate for the maximizer at each approximate E-step. This suggests a rule for automatically increasing the Monte Carlo sample size after iterations in which the true EM step is swamped by Monte Carlo error. In contrast, techniques for assessing Monte Carlo error have not been developed for use with alternative implementations of Monte Carlo EM algorithms utilizing Markov chain Monte Carlo E-step approximations. Three different data sets, including the infamous salamander data of McCullagh and Nelder, are used to illustrate the techniques and to compare them with the alternatives. The results show that the methods proposed can be considerably more efficient than those based on Markov chain Monte Carlo algorithms. However, the methods proposed may break down when the intractable integrals in the likelihood function are of high dimension.  相似文献   

4.
Monte Carlo methods for the exact inference have received much attention recently in complete or incomplete contingency table analysis. However, conventional Markov chain Monte Carlo, such as the Metropolis–Hastings algorithm, and importance sampling methods sometimes generate the poor performance by failing to produce valid tables. In this paper, we apply an adaptive Monte Carlo algorithm, the stochastic approximation Monte Carlo algorithm (SAMC; Liang, Liu, & Carroll, 2007), to the exact test of the goodness-of-fit of the model in complete or incomplete contingency tables containing some structural zero cells. The numerical results are in favor of our method in terms of quality of estimates.  相似文献   

5.
We describe a new Monte Carlo algorithm for the consistent and unbiased estimation of multidimensional integrals and the efficient sampling from multidimensional densities. The algorithm is inspired by the classical splitting method and can be applied to general static simulation models. We provide examples from rare-event probability estimation, counting, and sampling, demonstrating that the proposed method can outperform existing Markov chain sampling methods in terms of convergence speed and accuracy.  相似文献   

6.
We consider analysis of complex stochastic models based upon partial information. MCMC and reversible jump MCMC are often the methods of choice for such problems, but in some situations they can be difficult to implement; and suffer from problems such as poor mixing, and the difficulty of diagnosing convergence. Here we review three alternatives to MCMC methods: importance sampling, the forward-backward algorithm, and sequential Monte Carlo (SMC). We discuss how to design good proposal densities for importance sampling, show some of the range of models for which the forward-backward algorithm can be applied, and show how resampling ideas from SMC can be used to improve the efficiency of the other two methods. We demonstrate these methods on a range of examples, including estimating the transition density of a diffusion and of a discrete-state continuous-time Markov chain; inferring structure in population genetics; and segmenting genetic divergence data.  相似文献   

7.
In this paper, we present an adaptive evolutionary Monte Carlo algorithm (AEMC), which combines a tree-based predictive model with an evolutionary Monte Carlo sampling procedure for the purpose of global optimization. Our development is motivated by sensor placement applications in engineering, which requires optimizing certain complicated “black-box” objective function. The proposed method is able to enhance the optimization efficiency and effectiveness as compared to a few alternative strategies. AEMC falls into the category of adaptive Markov chain Monte Carlo (MCMC) algorithms and is the first adaptive MCMC algorithm that simulates multiple Markov chains in parallel. A theorem about the ergodicity property of the AEMC algorithm is stated and proven. We demonstrate the advantages of the proposed method by applying it to a sensor placement problem in a manufacturing process, as well as to a standard Griewank test function.  相似文献   

8.
Full likelihood-based inference for modern population genetics data presents methodological and computational challenges. The problem is of considerable practical importance and has attracted recent attention, with the development of algorithms based on importance sampling (IS) and Markov chain Monte Carlo (MCMC) sampling. Here we introduce a new IS algorithm. The optimal proposal distribution for these problems can be characterized, and we exploit a detailed analysis of genealogical processes to develop a practicable approximation to it. We compare the new method with existing algorithms on a variety of genetic examples. Our approach substantially outperforms existing IS algorithms, with efficiency typically improved by several orders of magnitude. The new method also compares favourably with existing MCMC methods in some problems, and less favourably in others, suggesting that both IS and MCMC methods have a continuing role to play in this area. We offer insights into the relative advantages of each approach, and we discuss diagnostics in the IS framework.  相似文献   

9.
Motivated by the need to sequentially design experiments for the collection of data in batches or blocks, a new pseudo-marginal sequential Monte Carlo algorithm is proposed for random effects models where the likelihood is not analytic, and has to be approximated. This new algorithm is an extension of the idealised sequential Monte Carlo algorithm where we propose to unbiasedly approximate the likelihood to yield an efficient exact-approximate algorithm to perform inference and make decisions within Bayesian sequential design. We propose four approaches to unbiasedly approximate the likelihood: standard Monte Carlo integration; randomised quasi-Monte Carlo integration, Laplace importance sampling and a combination of Laplace importance sampling and randomised quasi-Monte Carlo. These four methods are compared in terms of the estimates of likelihood weights and in the selection of the optimal sequential designs in an important pharmacological study related to the treatment of critically ill patients. As the approaches considered to approximate the likelihood can be computationally expensive, we exploit parallel computational architectures to ensure designs are derived in a timely manner.  相似文献   

10.
Park  Joonha  Atchadé  Yves 《Statistics and Computing》2020,30(5):1325-1345

We explore a general framework in Markov chain Monte Carlo (MCMC) sampling where sequential proposals are tried as a candidate for the next state of the Markov chain. This sequential-proposal framework can be applied to various existing MCMC methods, including Metropolis–Hastings algorithms using random proposals and methods that use deterministic proposals such as Hamiltonian Monte Carlo (HMC) or the bouncy particle sampler. Sequential-proposal MCMC methods construct the same Markov chains as those constructed by the delayed rejection method under certain circumstances. In the context of HMC, the sequential-proposal approach has been proposed as extra chance generalized hybrid Monte Carlo (XCGHMC). We develop two novel methods in which the trajectories leading to proposals in HMC are automatically tuned to avoid doubling back, as in the No-U-Turn sampler (NUTS). The numerical efficiency of these new methods compare favorably to the NUTS. We additionally show that the sequential-proposal bouncy particle sampler enables the constructed Markov chain to pass through regions of low target density and thus facilitates better mixing of the chain when the target density is multimodal.

  相似文献   

11.
We describe standard single-site Monte Carlo Markov chain methods, the Hastings and Metropolis algorithms, the Gibbs sampler and simulated annealing, for maximum a posteriori and marginal posterior modes image estimation. These methods can experience great difficulty in traversing the whole image space in a finite time when the target distribution is multi-modal. We present a survey of multiple-site update methods, including Swendsen and Wang's algorithm, coupled Markov chains and cascade algorithms designed to tackle the problem of moving between modes of the posterior image distribution. We compare the performance of some of these algorithms for sampling from degraded and non-degraded Ising models  相似文献   

12.
We demonstrate the use of auxiliary (or latent) variables for sampling non-standard densities which arise in the context of the Bayesian analysis of non-conjugate and hierarchical models by using a Gibbs sampler. Their strategic use can result in a Gibbs sampler having easily sampled full conditionals. We propose such a procedure to simplify or speed up the Markov chain Monte Carlo algorithm. The strength of this approach lies in its generality and its ease of implementation. The aim of the paper, therefore, is to provide an alternative sampling algorithm to rejection-based methods and other sampling approaches such as the Metropolis–Hastings algorithm.  相似文献   

13.
Although Markov chain Monte Carlo methods have been widely used in many disciplines, exact eigen analysis for such generated chains has been rare. In this paper, a special Metropolis-Hastings algorithm, Metropolized independent sampling, proposed first in Hastings (1970), is studied in full detail. The eigenvalues and eigenvectors of the corresponding Markov chain, as well as a sharp bound for the total variation distance between the nth updated distribution and the target distribution, are provided. Furthermore, the relationship between this scheme, rejection sampling, and importance sampling are studied with emphasis on their relative efficiencies. It is shown that Metropolized independent sampling is superior to rejection sampling in two respects: asymptotic efficiency and ease of computation.  相似文献   

14.
For big data analysis, high computational cost for Bayesian methods often limits their applications in practice. In recent years, there have been many attempts to improve computational efficiency of Bayesian inference. Here we propose an efficient and scalable computational technique for a state-of-the-art Markov chain Monte Carlo methods, namely, Hamiltonian Monte Carlo. The key idea is to explore and exploit the structure and regularity in parameter space for the underlying probabilistic model to construct an effective approximation of its geometric properties. To this end, we build a surrogate function to approximate the target distribution using properly chosen random bases and an efficient optimization process. The resulting method provides a flexible, scalable, and efficient sampling algorithm, which converges to the correct target distribution. We show that by choosing the basis functions and optimization process differently, our method can be related to other approaches for the construction of surrogate functions such as generalized additive models or Gaussian process models. Experiments based on simulated and real data show that our approach leads to substantially more efficient sampling algorithms compared to existing state-of-the-art methods.  相似文献   

15.
The Metropolis–Hastings algorithm is one of the most basic and well-studied Markov chain Monte Carlo methods. It generates a Markov chain which has as limit distribution the target distribution by simulating observations from a different proposal distribution. A proposed value is accepted with some particular probability otherwise the previous value is repeated. As a consequence, the accepted values are repeated a positive number of times and thus any resulting ergodic mean is, in fact, a weighted average. It turns out that this weighted average is an importance sampling-type estimator with random weights. By the standard theory of importance sampling, replacement of these random weights by their (conditional) expectations leads to more efficient estimators. In this paper we study the estimator arising by replacing the random weights with certain estimators of their conditional expectations. We illustrate by simulations that it is often more efficient than the original estimator while in the case of the independence Metropolis–Hastings and for distributions with finite support we formally prove that it is even better than the “optimal” importance sampling estimator.  相似文献   

16.
We consider the problem of estimating the rate matrix governing a finite-state Markov jump process given a number of fragmented time series. We propose to concatenate the observed series and to employ the emerging non-Markov process for estimation. We describe the bias arising if standard methods for Markov processes are used for the concatenated process, and provide a post-processing method to correct for this bias. This method applies to discrete-time Markov chains and to more general models based on Markov jump processes where the underlying state process is not observed directly. This is demonstrated in detail for a Markov switching model. We provide applications to simulated time series and to financial market data, where estimators resulting from maximum likelihood methods and Markov chain Monte Carlo sampling are improved using the presented correction.  相似文献   

17.
In the expectation–maximization (EM) algorithm for maximum likelihood estimation from incomplete data, Markov chain Monte Carlo (MCMC) methods have been used in change-point inference for a long time when the expectation step is intractable. However, the conventional MCMC algorithms tend to get trapped in local mode in simulating from the posterior distribution of change points. To overcome this problem, in this paper we propose a stochastic approximation Monte Carlo version of EM (SAMCEM), which is a combination of adaptive Markov chain Monte Carlo and EM utilizing a maximum likelihood method. SAMCEM is compared with the stochastic approximation version of EM and reversible jump Markov chain Monte Carlo version of EM on simulated and real datasets. The numerical results indicate that SAMCEM can outperform among the three methods by producing much more accurate parameter estimates and the ability to achieve change-point positions and estimates simultaneously.  相似文献   

18.
A Monte Carlo algorithm is said to be adaptive if it automatically calibrates its current proposal distribution using past simulations. The choice of the parametric family that defines the set of proposal distributions is critical for good performance. In this paper, we present such a parametric family for adaptive sampling on high dimensional binary spaces. A practical motivation for this problem is variable selection in a linear regression context. We want to sample from a Bayesian posterior distribution on the model space using an appropriate version of Sequential Monte Carlo. Raw versions of Sequential Monte Carlo are easily implemented using binary vectors with independent components. For high dimensional problems, however, these simple proposals do not yield satisfactory results. The key to an efficient adaptive algorithm are binary parametric families which take correlations into account, analogously to the multivariate normal distribution on continuous spaces. We provide a review of models for binary data and make one of them work in the context of Sequential Monte Carlo sampling. Computational studies on real life data with about a hundred covariates suggest that, on difficult instances, our Sequential Monte Carlo approach clearly outperforms standard techniques based on Markov chain exploration.  相似文献   

19.
The lasso is a popular technique of simultaneous estimation and variable selection in many research areas. The marginal posterior mode of the regression coefficients is equivalent to estimates given by the non-Bayesian lasso when the regression coefficients have independent Laplace priors. Because of its flexibility of statistical inferences, the Bayesian approach is attracting a growing body of research in recent years. Current approaches are primarily to either do a fully Bayesian analysis using Markov chain Monte Carlo (MCMC) algorithm or use Monte Carlo expectation maximization (MCEM) methods with an MCMC algorithm in each E-step. However, MCMC-based Bayesian method has much computational burden and slow convergence. Tan et al. [An efficient MCEM algorithm for fitting generalized linear mixed models for correlated binary data. J Stat Comput Simul. 2007;77:929–943] proposed a non-iterative sampling approach, the inverse Bayes formula (IBF) sampler, for computing posteriors of a hierarchical model in the structure of MCEM. Motivated by their paper, we develop this IBF sampler in the structure of MCEM to give the marginal posterior mode of the regression coefficients for the Bayesian lasso, by adjusting the weights of importance sampling, when the full conditional distribution is not explicit. Simulation experiments show that the computational time is much reduced with our method based on the expectation maximization algorithm and our algorithms and our methods behave comparably with other Bayesian lasso methods not only in prediction accuracy but also in variable selection accuracy and even better especially when the sample size is relatively large.  相似文献   

20.
Feature selection arises in many areas of modern science. For example, in genomic research, we want to find the genes that can be used to separate tissues of different classes (e.g. cancer and normal). One approach is to fit regression/classification models with certain penalization. In the past decade, hyper-LASSO penalization (priors) have received increasing attention in the literature. However, fully Bayesian methods that use Markov chain Monte Carlo (MCMC) for regression/classification with hyper-LASSO priors are still in lack of development. In this paper, we introduce an MCMC method for learning multinomial logistic regression with hyper-LASSO priors. Our MCMC algorithm uses Hamiltonian Monte Carlo in a restricted Gibbs sampling framework. We have used simulation studies and real data to demonstrate the superior performance of hyper-LASSO priors compared to LASSO, and to investigate the issues of choosing heaviness and scale of hyper-LASSO priors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号