首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
Receiver operating characteristic (ROC) curves can be used to assess the accuracy of tests measured on ordinal or continuous scales. The most commonly used measure for the overall diagnostic accuracy of diagnostic tests is the area under the ROC curve (AUC). A gold standard (GS) test on the true disease status is required to estimate the AUC. However, a GS test may be too expensive or infeasible. In many medical researches, the true disease status of the subjects may remain unknown. Under the normality assumption on test results from each disease group of subjects, we propose a heuristic method of estimating confidence intervals for the difference in paired AUCs of two diagnostic tests in the absence of a GS reference. This heuristic method is a three-stage method by combining the expectation-maximization (EM) algorithm, bootstrap method, and an estimation based on asymptotic generalized pivotal quantities (GPQs) to construct generalized confidence intervals for the difference in paired AUCs in the absence of a GS. Simulation results show that the proposed interval estimation procedure yields satisfactory coverage probabilities and expected interval lengths. The numerical example using a published dataset illustrates the proposed method.  相似文献   

2.
The semiparametric LABROC approach of fitting binormal model for estimating AUC as a global index of accuracy has been justified (except for bimodal forms), while for estimating a local index of accuracy such as TPF, it may lead to a bias in severe departure of data from binormality. We extended parametric ROC analysis for quantitative data when one or both pair members are mixture of Gaussian (MG) in particular for bimodal forms. We analytically showed that AUC and TPF are a mixture of weighting parameters of different components of AUCs and TPFs of a mixture of underlying distributions. In a simulation study of six configurations of MG distributions:{bimodal, normal} and {bimodal, bimodal} pairs, the parameters of MG distributions were estimated using the EM algorithm. The results showed that the estimated AUC from our proposed model was essentially unbiased, and that the bias in the estimated TPF at a clinically relevant range of FPF was roughly 0.01 for a sample size of n=100/100. In practice, with severe departures from binormality, we recommend an extension of the LABROC and software development for future research to allow for each member of the pair of distributions to be a mixture of Gaussian that is a more flexible parametric form.  相似文献   

3.
Summary.  The evaluation of the performance of a continuous diagnostic measure is a commonly encountered task in medical research. We develop Bayesian non-parametric models that use Dirichlet process mixtures and mixtures of Polya trees for the analysis of continuous serologic data. The modelling approach differs from traditional approaches to the analysis of receiver operating characteristic curve data in that it incorporates a stochastic ordering constraint for the distributions of serologic values for the infected and non-infected populations. Biologically such a constraint is virtually always feasible because serologic values from infected individuals tend to be higher than those for non-infected individuals. The models proposed provide data-driven inferences for the infected and non-infected population distributions, and for the receiver operating characteristic curve and corresponding area under the curve. We illustrate and compare the predictive performance of the Dirichlet process mixture and mixture of Polya trees approaches by using serologic data for Johne's disease in dairy cattle.  相似文献   

4.
Abstract

In diagnostic trials, clustered data are obtained when several subunits of the same patient are observed. Intracluster correlations need to be taken into account when analyzing such clustered data. A nonparametric method has been proposed by Obuchowski (1997 Obuchowski, N. A. 1997. Nonparametric analysis of clustered ROC curve data. Biometrics 53 (2):56778.[Crossref], [PubMed], [Web of Science ®] [Google Scholar]) to estimate the Receiver Operating Characteristic curve area (AUC) for such clustered data. However, Obuchowski’s estimator is not efficient as it gives equal weight to all pairwise rankings within and between cluster. In this paper, we propose a more efficient nonparametric AUC estimator with two sets of optimal weights. Simulation results show that the loss of efficiency of Obuchowski’s estimator for a single AUC or the AUC difference can be substantial when there is a moderate intracluster test correlation and the cluster size is large. The efficiency gain of our weighted AUC estimator for a single AUC or the AUC difference is further illustrated using the data from a study of screening tests for neonatal hearing.  相似文献   

5.
A simple approach for analyzing longitudinally measured biomarkers is to calculate summary measures such as the area under the curve (AUC) for each individual and then compare the mean AUC between treatment groups using methods such as t test. This two-step approach is difficult to implement when there are missing data since the AUC cannot be directly calculated for individuals with missing measurements. Simple methods for dealing with missing data include the complete case analysis and imputation. A recent study showed that the estimated mean AUC difference between treatment groups based on the linear mixed model (LMM), rather than on individually calculated AUCs by simple imputation, has negligible bias under random missing assumptions and only small bias when missing is not at random. However, this model assumes the outcome to be normally distributed, which is often violated in biomarker data. In this paper, we propose to use a LMM on log-transformed biomarkers, based on which statistical inference for the ratio, rather than difference, of AUC between treatment groups is provided. The proposed method can not only handle the potential baseline imbalance in a randomized trail but also circumvent the estimation of the nuisance variance parameters in the log-normal model. The proposed model is applied to a recently completed large randomized trial studying the effect of nicotine reduction on biomarker exposure of smokers.  相似文献   

6.
In this paper, we introduce a new nonparametric test of symmetry based on the empirical overlap coefficient using kernel density estimation. Our investigation reveals that the new test is more powerful than the runs test of symmetry proposed by McWilliams [31]. Intensive simulation is conducted to examine the power of the proposed test. Data from a level I Trauma center are used to illustrate the procedures developed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号