首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates the estimations of regression parameters and response mean in nonlinear regression models in the presence of missing response variables that are missing with missingness probabilities depending on covariates. We propose four empirical likelihood (EL)-based estimators for the regression parameters and the response mean. The resulting estimators are shown to be consistent and asymptotically normal under some general assumptions. To construct the confidence regions for the regression parameters as well as the response mean, we develop four EL ratio statistics, which are proven to have the χ2 distribution asymptotically. Simulation studies and an artificial data set are used to illustrate the proposed methodologies. Empirical results show that the EL method behaves better than the normal approximation method and that the coverage probabilities and average lengths depend on the selection probability function.  相似文献   

2.
In this paper, a nonlinear model with response variables missing at random is studied. In order to improve the coverage accuracy for model parameters, the empirical likelihood (EL) ratio method is considered. On the complete data, the EL statistic for the parameters and its approximation have a χ2 asymptotic distribution. When the responses are reconstituted using a semi-parametric method, the empirical log-likelihood on the response variables associated with the imputed data is also asymptotically χ2. The Wilks theorem for EL on the parameters, based on reconstituted data, is also satisfied. These results can be used to construct the confidence region for the model parameters and the response variables. It is shown via Monte Carlo simulations that the EL methods outperform the normal approximation-based method in terms of coverage probability for the unknown parameter, including on the reconstituted data. The advantages of the proposed method are exemplified on real data.  相似文献   

3.
The authors study the empirical likelihood method for linear regression models. They show that when missing responses are imputed using least squares predictors, the empirical log‐likelihood ratio is asymptotically a weighted sum of chi‐square variables with unknown weights. They obtain an adjusted empirical log‐likelihood ratio which is asymptotically standard chi‐square and hence can be used to construct confidence regions. They also obtain a bootstrap empirical log‐likelihood ratio and use its distribution to approximate that of the empirical log‐likelihood ratio. A simulation study indicates that the proposed methods are comparable in terms of coverage probabilities and average lengths of confidence intervals, and perform better than a normal approximation based method.  相似文献   

4.
Quantitle regression (QR) is a popular approach to estimate functional relations between variables for all portions of a probability distribution. Parameter estimation in QR with missing data is one of the most challenging issues in statistics. Regression quantiles can be substantially biased when observations are subject to missingness. We study several inverse probability weighting (IPW) estimators for parameters in QR when covariates or responses are subject to missing not at random. Maximum likelihood and semiparametric likelihood methods are employed to estimate the respondent probability function. To achieve nice efficiency properties, we develop an empirical likelihood (EL) approach to QR with the auxiliary information from the calibration constraints. The proposed methods are less sensitive to misspecified missing mechanisms. Asymptotic properties of the proposed IPW estimators are shown under general settings. The efficiency gain of EL-based IPW estimator is quantified theoretically. Simulation studies and a data set on the work limitation of injured workers from Canada are used to illustrated our proposed methodologies.  相似文献   

5.
This paper develops a novel weighted composite quantile regression (CQR) method for estimation of a linear model when some covariates are missing at random and the probability for missingness mechanism can be modelled parametrically. By incorporating the unbiased estimating equations of incomplete data into empirical likelihood (EL), we obtain the EL-based weights, and then re-adjust the inverse probability weighted CQR for estimating the vector of regression coefficients. Theoretical results show that the proposed method can achieve semiparametric efficiency if the selection probability function is correctly specified, therefore the EL weighted CQR is more efficient than the inverse probability weighted CQR. Besides, our algorithm is computationally simple and easy to implement. Simulation studies are conducted to examine the finite sample performance of the proposed procedures. Finally, we apply the new method to analyse the US news College data.  相似文献   

6.
Tianqing Liu 《Statistics》2016,50(1):89-113
This paper proposes an empirical likelihood-based weighted (ELW) quantile regression approach for estimating the conditional quantiles when some covariates are missing at random. The proposed ELW estimator is computationally simple and achieves semiparametric efficiency if the probability of missingness is correctly specified. The limiting covariance matrix of the ELW estimator can be estimated by a resampling technique, which does not involve nonparametric density estimation or numerical derivatives. Simulation results show that the ELW method works remarkably well in finite samples. A real data example is used to illustrate the proposed ELW method.  相似文献   

7.
Efficient statistical inference on nonignorable missing data is a challenging problem. This paper proposes a new estimation procedure based on composite quantile regression (CQR) for linear regression models with nonignorable missing data, that is applicable even with high-dimensional covariates. A parametric model is assumed for modelling response probability, which is estimated by the empirical likelihood approach. Local identifiability of the proposed strategy is guaranteed on the basis of an instrumental variable approach. A set of data-based adaptive weights constructed via an empirical likelihood method is used to weight CQR functions. The proposed method is resistant to heavy-tailed errors or outliers in the response. An adaptive penalisation method for variable selection is proposed to achieve sparsity with high-dimensional covariates. Limiting distributions of the proposed estimators are derived. Simulation studies are conducted to investigate the finite sample performance of the proposed methodologies. An application to the ACTG 175 data is analysed.  相似文献   

8.
Wilks's theorem is useful for constructing confidence regions. When applying the popular empirical likelihood to data with nonignorable nonresponses, Wilks's phenomenon does not hold. This paper unveils that this is caused by the extra estimation of the nuisance parameter in the nonignorable nonresponse propensity. Motivated by this result, we propose an adjusted empirical likelihood for which Wilks's theorem holds. Asymptotic results are presented and supplemented by simulation results for finite sample performance of the point estimators and confidence regions. An analysis of a data set is included for illustration.  相似文献   

9.
Empirical likelihood for generalized linear models with missing responses   总被引:1,自引:0,他引:1  
The paper uses the empirical likelihood method to study the construction of confidence intervals and regions for regression coefficients and response mean in generalized linear models with missing response. By using the inverse selection probability weighted imputation technique, the proposed empirical likelihood ratios are asymptotically chi-squared. Our approach is to directly calibrate the empirical likelihood ratio, which is called as a bias-correction method. Also, a class of estimators for the parameters of interest is constructed, and the asymptotic distributions of the proposed estimators are obtained. A simulation study indicates that the proposed methods are comparable in terms of coverage probabilities and average lengths/areas of confidence intervals/regions. An example of a real data set is used for illustrating our methods.  相似文献   

10.
Distribution function estimation plays a significant role of foundation in statistics since the population distribution is always involved in statistical inference and is usually unknown. In this paper, we consider the estimation of the distribution function of a response variable Y with missing responses in the regression problems. It is proved that the augmented inverse probability weighted estimator converges weakly to a zero mean Gaussian process. A augmented inverse probability weighted empirical log-likelihood function is also defined. It is shown that the empirical log-likelihood converges weakly to the square of a Gaussian process with mean zero and variance one. We apply these results to the construction of Gaussian process approximation based confidence bands and empirical likelihood based confidence bands of the distribution function of Y. A simulation is conducted to evaluate the confidence bands.  相似文献   

11.
The EM algorithm is often used for finding the maximum likelihood estimates in generalized linear models with incomplete data. In this article, the author presents a robust method in the framework of the maximum likelihood estimation for fitting generalized linear models when nonignorable covariates are missing. His robust approach is useful for downweighting any influential observations when estimating the model parameters. To avoid computational problems involving irreducibly high‐dimensional integrals, he adopts a Metropolis‐Hastings algorithm based on a Markov chain sampling method. He carries out simulations to investigate the behaviour of the robust estimates in the presence of outliers and missing covariates; furthermore, he compares these estimates to the classical maximum likelihood estimates. Finally, he illustrates his approach using data on the occurrence of delirium in patients operated on for abdominal aortic aneurysm.  相似文献   

12.
The kth ( 1<k 2) power expectile regression (ER) can balance robustness and effectiveness between the ordinary quantile regression and ER simultaneously. Motivated by a longitudinal ACTG 193A data with nonignorable dropouts, we propose a two-stage estimation procedure and statistical inference methods based on the kth power ER and empirical likelihood to accommodate both the within-subject correlations and nonignorable dropouts. Firstly, we construct the bias-corrected generalized estimating equations by combining the kth power ER and inverse probability weighting approaches. Subsequently, the generalized method of moments is utilized to estimate the parameters in the nonignorable dropout propensity based on sufficient instrumental estimating equations. Secondly, in order to incorporate the within-subject correlations under an informative working correlation structure, we borrow the idea of quadratic inference function to obtain the improved empirical likelihood procedures. The asymptotic properties of the corresponding estimators and their confidence regions are derived. The finite-sample performance of the proposed estimators is studied through simulation and an application to the ACTG 193A data is also presented.  相似文献   

13.
Xu Guo  Yiping Yang  Wangli Xu 《Statistics》2015,49(3):588-601
In this paper, we investigate the empirical-likelihood-based inference for the construction of confidence intervals and regions of the parameters of interest in single index models with missing covariates at random. An augmented inverse probability weighted-type empirical likelihood ratio for the parameters of interest is defined such that this ratio is asymptotically standard chi-squared. Our approach is to directly calibrate the empirical log-likelihood ratio, and does not need multiplication by an adjustment factor for the original ratio. Our bias-corrected empirical likelihood is self-scale invariant and no plug-in estimator for the limiting variance is needed. Some simulation studies are carried out to assess the performance of our proposed method.  相似文献   

14.
Abstract

The purpose of this paper is twofold. First, we investigate estimations in varying-coefficient partially linear errors-in-variables models with covariates missing at random. However, the estimators are often biased due to the existence of measurement errors, the bias-corrected profile least-squares estimator and local liner estimators for unknown parametric and coefficient functions are obtained based on inverse probability weighted method. The asymptotic properties of the proposed estimators both for the parameter and nonparametric parts are established. Second, we study asymptotic distributions of an empirical log-likelihood ratio statistic and maximum empirical likelihood estimator for the unknown parameter. Based on this, more accurate confidence regions of the unknown parameter can be constructed. The methods are examined through simulation studies and illustrated by a real data analysis.  相似文献   

15.
In this paper, we consider the empirical likelihood inferences of the partial functional linear model with missing responses. Two empirical log-likelihood ratios of the parameters of interest are constructed, and the corresponding maximum empirical likelihood estimators of parameters are derived. Under some regularity conditions, we show that the proposed two empirical log-likelihood ratios are asymptotic standard Chi-squared. Thus, the asymptotic results can be used to construct the confidence intervals/regions for the parameters of interest. We also establish the asymptotic distribution theory of corresponding maximum empirical likelihood estimators. A simulation study indicates that the proposed methods are comparable in terms of coverage probabilities and average lengths of confidence intervals. An example of real data is also used to illustrate our proposed methods.  相似文献   

16.
Suppose that we have a linear regression model Y=Xβ+ν0(X)εY=Xβ+ν0(X)ε with random error εε, where X is a random design variable and is observed completely, and Y is the response variable and some Y-values are missing at random (MAR). In this paper, based on the ‘complete’ data set for Y after inverse probability weighted imputation, we construct empirical likelihood statistics on EY   and ββ which have the χ2χ2-type limiting distributions under some new conditions compared with Xue (2009). Our results broaden the applicable scope of the approach combined with Xue (2009).  相似文献   

17.
In this article, empirical likelihood inferences for the varying coefficient partially nonlinear models are investigated. An empirical log-likelihood ratio function for the unknown parameter vector in the nonlinear function part and a residual-adjusted empirical log-likelihood ratio function for the nonparametric component are proposed. The corresponding Wilks phenomena are proved and the confidence regions for parametric component and nonparametric component are constructed. Simulation studies indicate that, in terms of coverage probabilities and average areas of the confidence regions, the empirical likelihood method performs better than the normal approximation-based method. Furthermore, a real data set application is also provided to illustrate the proposed empirical likelihood estimation technique.  相似文献   

18.
In this paper, we propose an empirical likelihood-based weighted estimator of regression parameter in quantile regression model with non ignorable missing covariates. The proposed estimator is computationally simple and achieves semiparametric efficiency if the probability of missingness on the fully observed variables is correctly specified. The efficiency gain of the proposed estimator over the complete-case-analysis estimator is quantified theoretically and illustrated via simulation and a real data application.  相似文献   

19.
In this article, we present a new empirical likelihood ratio for constructing the confidence interval of the response mean of generalized linear models with missing at random responses. Compared with the existing methods, the proposal can avoid the so-called “curse of dimensionality” problem when the dimension of covariates is high, and is still chi-squared distributed asymptotically, nevertheless. Simulation studies are also provided to illustrate the performance of the developed method.  相似文献   

20.
Abstract

In this article, empirical likelihood is applied to the linear regression model with inequality constraints. We prove that asymptotic distribution of the adjusted empirical likelihood ratio test statistic is a weighted mixture of chi-square distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号