首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 920 毫秒
1.
In this paper, we study the estimation and inference for a class of semiparametric mixtures of partially linear models. We prove that the proposed models are identifiable under mild conditions, and then give a PL–EM algorithm estimation procedure based on profile likelihood. The asymptotic properties for the resulting estimators and the ascent property of the PL–EM algorithm are investigated. Furthermore, we develop a test statistic for testing whether the non parametric component has a linear structure. Monte Carlo simulations and a real data application highlight the interest of the proposed procedures.  相似文献   

2.
Summary.  Motivated from the problem of testing for genetic effects on complex traits in the presence of gene–environment interaction, we develop score tests in general semiparametric regression problems that involves Tukey style 1 degree-of-freedom form of interaction between parametrically and non-parametrically modelled covariates. We find that the score test in this type of model, as recently developed by Chatterjee and co-workers in the fully parametric setting, is biased and requires undersmoothing to be valid in the presence of non-parametric components. Moreover, in the presence of repeated outcomes, the asymptotic distribution of the score test depends on the estimation of functions which are defined as solutions of integral equations, making implementation difficult and computationally taxing. We develop profiled score statistics which are unbiased and asymptotically efficient and can be performed by using standard bandwidth selection methods. In addition, to overcome the difficulty of solving functional equations, we give easy interpretations of the target functions, which in turn allow us to develop estimation procedures that can be easily implemented by using standard computational methods. We present simulation studies to evaluate type I error and power of the method proposed compared with a naive test that does not consider interaction. Finally, we illustrate our methodology by analysing data from a case–control study of colorectal adenoma that was designed to investigate the association between colorectal adenoma and the candidate gene NAT2 in relation to smoking history.  相似文献   

3.
Detection of outliers or influential observations is an important work in statistical modeling, especially for the correlated time series data. In this paper we propose a new procedure to detect patch of influential observations in the generalized autoregressive conditional heteroskedasticity (GARCH) model. Firstly we compare the performance of innovative perturbation scheme, additive perturbation scheme and data perturbation scheme in local influence analysis. We find that the innovative perturbation scheme give better result than other two schemes although this perturbation scheme may suffer from masking effects. Then we use the stepwise local influence method under innovative perturbation scheme to detect patch of influential observations and uncover the masking effects. The simulated studies show that the new technique can successfully detect a patch of influential observations or outliers under innovative perturbation scheme. The analysis based on simulation studies and two real data sets show that the stepwise local influence method under innovative perturbation scheme is efficient for detecting multiple influential observations and dealing with masking effects in the GARCH model.  相似文献   

4.
Bayesian model learning based on a parallel MCMC strategy   总被引:1,自引:0,他引:1  
We introduce a novel Markov chain Monte Carlo algorithm for estimation of posterior probabilities over discrete model spaces. Our learning approach is applicable to families of models for which the marginal likelihood can be analytically calculated, either exactly or approximately, given any fixed structure. It is argued that for certain model neighborhood structures, the ordinary reversible Metropolis-Hastings algorithm does not yield an appropriate solution to the estimation problem. Therefore, we develop an alternative, non-reversible algorithm which can avoid the scaling effect of the neighborhood. To efficiently explore a model space, a finite number of interacting parallel stochastic processes is utilized. Our interaction scheme enables exploration of several local neighborhoods of a model space simultaneously, while it prevents the absorption of any particular process to a relatively inferior state. We illustrate the advantages of our method by an application to a classification model. In particular, we use an extensive bacterial database and compare our results with results obtained by different methods for the same data.  相似文献   

5.
Many areas of statistical modeling are plagued by the “curse of dimensionality,” in which there are more variables than observations. This is especially true when developing functional regression models where the independent dataset is some type of spectral decomposition, such as data from near-infrared spectroscopy. While we could develop a very complex model by simply taking enough samples (such that n > p), this could prove impossible or prohibitively expensive. In addition, a regression model developed like this could turn out to be highly inefficient, as spectral data usually exhibit high multicollinearity. In this article, we propose a two-part algorithm for selecting an effective and efficient functional regression model. Our algorithm begins by evaluating a subset of discrete wavelet transformations, allowing for variation in both wavelet and filter number. Next, we perform an intermediate processing step to remove variables with low correlation to the response data. Finally, we use the genetic algorithm to perform a stochastic search through the subset regression model space, driven by an information-theoretic objective function. We allow our algorithm to develop the regression model for each response variable independently, so as to optimally model each variable. We demonstrate our method on the familiar biscuit dough dataset, which has been used in a similar context by several researchers. Our results demonstrate both the flexibility and the power of our algorithm. For each response variable, a different subset model is selected, and different wavelet transformations are used. The models developed by our algorithm show an improvement, as measured by lower mean error, over results in the published literature.  相似文献   

6.
In this paper we propose a new lifetime model for multivariate survival data with a surviving fraction. We develop this model assuming that there are m types of unobservable competing risks, where each risk is related to a time of the occurrence of an event of interest. We explore the use of Markov chain Monte Carlo methods to develop a Bayesian analysis for the proposed model. We also perform a simulation study in order to analyse the frequentist coverage probabilities of credible interval derived from posteriors. Our modelling is illustrated through a real data set.  相似文献   

7.
In this paper, we propose to use a special class of bivariate frailty models to study dependent censored data. The proposed models are closely linked to Archimedean copula models. We give sufficient conditions for the identifiability of this type of competing risks models. The proposed conditions are derived based on a property shared by Archimedean copula models and satisfied by several well‐known bivariate frailty models. Compared with the models studied by Heckman and Honoré and Abbring and van den Berg, our models are more restrictive but can be identified with a discrete (even finite) covariate. Under our identifiability conditions, expectation–maximization (EM) algorithm provides us with consistent estimates of the unknown parameters. Simulation studies have shown that our estimation procedure works quite well. We fit a dependent censored leukaemia data set using the Clayton copula model and end our paper with some discussions. © 2014 Board of the Foundation of the Scandinavian Journal of Statistics  相似文献   

8.
In this article, we propose an efficient and robust estimation for the semiparametric mixture model that is a mixture of unknown location-shifted symmetric distributions. Our estimation is derived by minimizing the profile Hellinger distance (MPHD) between the model and a nonparametric density estimate. We propose a simple and efficient algorithm to find the proposed MPHD estimation. Monte Carlo simulation study is conducted to examine the finite sample performance of the proposed procedure and to compare it with other existing methods. Based on our empirical studies, the newly proposed procedure works very competitively compared to the existing methods for normal component cases and much better for non-normal component cases. More importantly, the proposed procedure is robust when the data are contaminated with outlying observations. A real data application is also provided to illustrate the proposed estimation procedure.  相似文献   

9.
10.
Insurance and economic data are often positive, and we need to take into account this peculiarity in choosing a statistical model for their distribution. An example is the inverse Gaussian (IG), which is one of the most famous and considered distributions with positive support. With the aim of increasing the use of the IG distribution on insurance and economic data, we propose a convenient mode-based parameterization yielding the reparametrized IG (rIG) distribution; it allows/simplifies the use of the IG distribution in various branches of statistics, and we give some examples. In nonparametric statistics, we define a smoother based on rIG kernels. By construction, the estimator is well-defined and does not allocate probability mass to unrealistic negative values. We adopt likelihood cross-validation to select the smoothing parameter. In robust statistics, we propose the contaminated IG distribution, a heavy-tailed generalization of the rIG distribution to accommodate mild outliers. Finally, for model-based clustering and semiparametric density estimation, we present finite mixtures of rIG distributions. We use the EM algorithm to obtain maximum likelihood estimates of the parameters of the mixture and contaminated models. We use insurance data about bodily injury claims, and economic data about incomes of Italian households, to illustrate the models.  相似文献   

11.
Supersaturated designs are factorial designs in which the number of potential effects is greater than the run size. They are commonly used in screening experiments, with the aim of identifying the dominant active factors with low cost. However, an important research field, which is poorly developed, is the analysis of such designs with non-normal response. In this article, we develop a variable selection strategy, through the modification of the PageRank algorithm, which is commonly used in the Google search engine for ranking Webpages. The proposed method incorporates an appropriate information theoretical measure into this algorithm and as a result, it can be efficiently used for factor screening. A noteworthy advantage of this procedure is that it allows the use of supersaturated designs for analyzing discrete data and therefore a generalized linear model is assumed. As it is depicted via a thorough simulation study, in which the Type I and Type II error rates are computed for a wide range of underlying models and designs, the presented approach can be considered quite advantageous and effective.  相似文献   

12.
Modelling extreme wind speeds in regions prone to hurricanes   总被引:1,自引:0,他引:1  
Extreme wind speeds can arise as the result of a simple pressure differential, or a complex dynamic system such as a tropical storm. When sets of record values comprise a mixture of two or more different types of event, the standard models for extremes based on a single limiting distribution are not applicable. We develop a mixture model for extreme winds arising from two distinct processes. Working with sequences of annual maximum speeds obtained at hurricane prone locations in the USA, we take a Bayesian approach to inference, which allows the incorporation of prior information obtained from other sites. We model the extremal behaviour for the contrasting wind climates of Boston and Key West, and show that the standard models can give misleading results at such locations.  相似文献   

13.
The lasso is a popular technique of simultaneous estimation and variable selection in many research areas. The marginal posterior mode of the regression coefficients is equivalent to estimates given by the non-Bayesian lasso when the regression coefficients have independent Laplace priors. Because of its flexibility of statistical inferences, the Bayesian approach is attracting a growing body of research in recent years. Current approaches are primarily to either do a fully Bayesian analysis using Markov chain Monte Carlo (MCMC) algorithm or use Monte Carlo expectation maximization (MCEM) methods with an MCMC algorithm in each E-step. However, MCMC-based Bayesian method has much computational burden and slow convergence. Tan et al. [An efficient MCEM algorithm for fitting generalized linear mixed models for correlated binary data. J Stat Comput Simul. 2007;77:929–943] proposed a non-iterative sampling approach, the inverse Bayes formula (IBF) sampler, for computing posteriors of a hierarchical model in the structure of MCEM. Motivated by their paper, we develop this IBF sampler in the structure of MCEM to give the marginal posterior mode of the regression coefficients for the Bayesian lasso, by adjusting the weights of importance sampling, when the full conditional distribution is not explicit. Simulation experiments show that the computational time is much reduced with our method based on the expectation maximization algorithm and our algorithms and our methods behave comparably with other Bayesian lasso methods not only in prediction accuracy but also in variable selection accuracy and even better especially when the sample size is relatively large.  相似文献   

14.
Generalized additive models provide a way of circumventing curse of dimension in a wide range of nonparametric regression problem. In this paper, we present a multiplicative model for conditional variance functions where one can apply a generalized additive regression method. This approach extends Fan and Yao (1998) to multivariate cases with a multiplicative structure. In this approach, we use squared residuals instead of using log-transformed squared residuals. This idea gives a smaller variance than Yu (2017) when the variance of squared error is smaller than the variance of log-transformed squared error. We provide estimators based on quasi-likelihood and an iterative algorithm based on smooth backfitting for generalized additive models. We also provide some asymptotic properties of estimators and the convergence of proposed algorithm. A numerical study shows the empirical evidence of the theory.  相似文献   

15.
In this article, we develop a mixed frequency dynamic factor model in which the disturbances of both the latent common factor and of the idiosyncratic components have time-varying stochastic volatilities. We use the model to investigate business cycle dynamics in the euro area and present three sets of empirical results. First, we evaluate the impact of macroeconomic releases on point and density forecast accuracy and on the width of forecast intervals. Second, we show how our setup allows to make a probabilistic assessment of the contribution of releases to forecast revisions. Third, we examine point and density out of sample forecast accuracy. We find that introducing stochastic volatility in the model contributes to an improvement in both point and density forecast accuracy. Supplementary materials for this article are available online.  相似文献   

16.
The aim of this paper is to propose conditions for exploring the class of identifiable Gaussian models with one latent variable. In particular, we focus attention on the topological structure of the complementary graph of the residuals. These conditions are mainly based on the presence of odd cycles and bridge edges in the complementary graph. We propose to use the spanning tree representation of the graph and the associated matrix of fundamental cycles. In this way it is possible to obtain an algorithm able to establish in advance whether modifying the graph corresponding to an identifiable model, the resulting graph still denotes identifiability.  相似文献   

17.
We consider the problem of constructing good two-level nonregular fractional factorial designs. The criteria of minimum G and G2 aberration are used to rank designs. A general design structure is utilized to provide a solution to this practical, yet challenging, problem. With the help of this design structure, we develop an efficient algorithm for obtaining a collection of good designs based on the aforementioned two criteria. Finally, we present some results for designs of 32 and 40 runs obtained from applying this algorithmic approach.  相似文献   

18.
Summary. Motivated by the autologistic model for the analysis of spatial binary data on the two-dimensional lattice, we develop efficient computational methods for calculating the normalizing constant for models for discrete data defined on the cylinder and lattice. Because the normalizing constant is generally unknown analytically, statisticians have developed various ad hoc methods to overcome this difficulty. Our aim is to provide computationally and statistically efficient methods for calculating the normalizing constant so that efficient likelihood-based statistical methods are then available for inference. We extend the so-called transition method to find a feasible computational method of obtaining the normalizing constant for the cylinder boundary condition. To extend the result to the free-boundary condition on the lattice we use an efficient path sampling Markov chain Monte Carlo scheme. The methods are generally applicable to association patterns other than spatial, such as clustered binary data, and to variables taking three or more values described by, for example, Potts models.  相似文献   

19.
Strict collapsibility and model collapsibility are two important concepts associated with the dimension reduction of a multidimensional contingency table, without losing the relevant information. In this paper, we obtain some necessary and sufficient conditions for the strict collapsibility of the full model, with respect to an interaction factor or a set of interaction factors, based on the interaction parameters of the conditional/layer log-linear models. For hierarchical log-linear models, we present also necessary and sufficient conditions for the full model to be model collapsible, based on the conditional interaction parameters. We discuss both the cases where one variable or a set of variables is conditioned. The connections between the strict collapsibility and the model collapsibility are also pointed out. Our results are illustrated through suitable examples, including a real life application.  相似文献   

20.
Currently, extreme large-scale genetic data present significant challenges for cluster analysis. Most of the existing clustering methods are typically built on the Euclidean distance and geared toward analyzing continuous response. They work well for clustering, e.g. microarray gene expression data, but often perform poorly for clustering, e.g. large-scale single nucleotide polymorphism (SNP) data. In this paper, we study the penalized latent class model for clustering extremely large-scale discrete data. The penalized latent class model takes into account the discrete nature of the response using appropriate generalized linear models and adopts the lasso penalized likelihood approach for simultaneous model estimation and selection of important covariates. We develop very efficient numerical algorithms for model estimation based on the iterative coordinate descent approach and further develop the expectation–maximization algorithm to incorporate and model missing values. We use simulation studies and applications to the international HapMap SNP data to illustrate the competitive performance of the penalized latent class model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号