首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Urban green spaces, such as forest fragments, vacant lots, and community gardens, are increasingly highlighted as biodiversity refuges and are of growing interest to conservation. At the same time, the burgeoning urban garden movement partially seeks to ameliorate problems of food security. Arthropods link these two issues (conservation and food security) given their abundance, diversity, and role as providers of ecosystem services like pollination and pest control. Many previous studies of urban arthropods focused on a single taxon (e.g. order or family), and examined either local habitat drivers or effects of landscape characteristics. In contrast, we examined both local and landscape drivers of community patterns, and examined differences in abundance, richness, and trophic structure of arthropod communities in urban forest fragments, vacant lots, and community gardens. We sampled ground-foraging arthropods, collected data on 24 local habitat features (e.g., vegetation, ground cover, concrete), and examined land-cover types within 2 km of 12 study sites in Toledo, Ohio. We found that abundance and richness of urban arthropods differed by habitat type and that richness of ants and spiders, in particular, varied among lots, gardens, and forests. Several local and landscape factors correlated with changes in abundance, richness, and trophic composition of arthropods, and different factors were important for specific arthropod groups. Overwhelmingly, local factors were the predominant (80 % of interactions) driver of arthropods in this urban environment. These results indicate that park managers and gardeners alike may be able to manage forests and gardens to promote biodiversity of desired organisms and potentially improve ecosystem services within the urban landscape.  相似文献   

2.
The invertebrate fauna in artificial urban habitats has yet to be systematically investigated. The current field study in central Ohio was undertaken to assess the numbers and types of macroinvertebrates in mulched and unmulched plots during a one-year period. Invertebrates quickly infiltrated the plots with bare soil (control) and any of four types of mulch (shredded hardwood, shredded recycled wood, pine bark mini-nuggets, and pea gravel). One month after establishing the plots, invertebrates were present in numbers comparable to subsequent months. Invertebrates found in the plots were primarily saprophytic taxa: millipedes (32.6%), segmented worms (19.8%), isopods (6.7%), and various beetle families (1.5%). Predatory taxa included centipedes (9.8%), ants (9.7%), carabid beetles and staphylinid beetles (7.3%), and spiders (0.9%). Types of invertebrates were similar in all ground cover types, but numbers of invertebrates differed significantly. Invertebrates were present year-round in mulched plots, and plots with organic mulch harbored significantly more invertebrates than plots mulched with pea gravel. Bare soil always contained the fewest number of invertebrates. There was no significant difference in numbers of invertebrates based on the cardinal side of the building.  相似文献   

3.
The capacity of small urban park to serve as urban habitats are rarely explored. This study analyses the characteristics of small urban parks and their potential to support urban biodiversity and ecological functions. Nine small urban parks were studied in Malaysia in August and September 2014 using the combined field survey method of structured observation and field measurements. The measured variables were divided into three broad categories of physical characteristics, species richness and human factors. Bird species richness and abundance were used as the indicators for assessing biodiversity. Pearson correlations and multiple regressions were conducted to analyse the relationships between variables and to identify which variables had a significant effect on bird species richness and abundance. The results demonstrated that park area and vegetation variables ( e.g. the percentage of tree canopy cover, open grass/ground, native-exotic plants) are the important predictors of bird species richness and abundance. The percentage of canopy covers (negative relation) and park area (positive relation) are the best predictors of bird species richness in small urban parks. Meanwhile, the best predictors for bird abundance are the percentage of canopy covers (negative relation) and native vegetation species (positive relation). Human activities and park surroundings have a marginal effect on the presence of bird species in small parks. Based on the findings, we provide two general recommendations that could probably increase bird diversity in small urban parks: (1) the park development and management plan should incorporate a social-ecological approach that can benefit both city-dwellers and bird species, and (2) findings from the study should be used to rethink the planting design and composition of especially newly established small urban parks.  相似文献   

4.
Urban gardens may support bees by providing resources in otherwise resource-poor environments. However, it is unclear whether urban, backyard gardens with native plants will support more bees than gardens without native plants. We examined backyard gardens in northwestern Ohio to ask: 1) Does bee diversity, abundance, and community composition differ in backyard gardens with and without native plants? 2) What characteristics of backyard gardens and land cover in the surrounding landscape correlate with changes in the bee community? 3) Do bees in backyard gardens respond more strongly to local or landscape factors? We sampled bees with pan trapping, netting, and direct observation. We examined vegetation characteristics and land cover in 500 m, 1 km, and 2 km buffers surrounding each garden. Abundance of all bees, native bees, and cavity-nesting bees (but not ground-nesting bees) was greater in native plant gardens but only richness of cavity-nesting bees differed in gardens with and without native plants. Bee community composition differed in gardens with and without native plants. Overall, bee richness and abundance were positively correlated with local characteristics of backyard gardens, such as increased floral abundance, taller vegetation, more cover by woody plants, less cover by grass, and larger vegetable gardens. Differences in the amount of forest, open space, and wetlands surrounding gardens influenced abundance of cavity- and ground-nesting bees, but at different spatial scales. Thus, presence of native plants, and local and landscape characteristics might play important roles in maintaining bee diversity within urban areas.  相似文献   

5.
As rapid urbanization continues, existing natural areas within urban zones will play a critical role in safeguarding remaining biodiversity. Ants are an integral part of almost every terrestrial ecosystem, including urban environments, and understanding which environmental characteristics influence their persistence is critical. In this study, 24 protected natural areas within urban parks including mosaic, scrub, herbaceous and forest habitats were surveyed for ants with 563 pitfall traps. The data provide insights into the distribution and abundance of ant fauna in San Francisco natural areas, as well as which characteristics of parks have the most influence on ant community composition. A total of 2,068 ant individuals representing 15 species were collected. A regression analysis revealed that urban forests reduced ant richness and abundance and that there was little or no impact of the Argentine ant on native ants. Natural area size and shape were not important in explaining variations in overall ant species richness and abundance, with many smaller natural areas harboring ant populations that are just as diverse and robust as larger areas.  相似文献   

6.
Two synchronous projects undertaken in 2011 examined the likely impact of increasing urban densification on invertebrate populations within urban settlement in Perth, Western Australia. One project analysed the ant fauna found in 20 gardens and lawns in small to very small properties (these having a bungalow or duplex (semi-detached) as the main residential building, and a lawn or garden area of 43 m2–332 m2) east, south, north and west of the Central Business District (CBD). The other project examined the ant fauna at 14 sites, principally in native regrowth along the Kwinana Freeway, a major artery that runs north to south through Perth’s suburbs. The gardens and lawns produced a very depauperate fauna of 26 ant species, of which a maximum of 20 were native and at least six species were exotic. The ant fauna from regrowth adjacent to the Kwinana Freeway and at two additional sites (one a bush control) was more than twice as rich, the 56 species collected including only two exotics. In the garden project, ant richness, evenness and abundance were not significantly correlated with size of the garden area. The same applied even when the exotic Pheidole megacephala-dominated gardens were removed from the analysis. Ordination analysis combining the two sets of data revealed a distinct clustering of most of the regrowth sites, whereas the bush control stood alone and garden or lawn sites exhibited a much looser pattern of association. We suggest that increasing the density of Perth suburbs is resulting in drastic loss of native invertebrate fauna, of which ants are a useful bioindicator. However, native vegetation regrowth along major arterial roads could act as a reservoir for invertebrate species that might otherwise disappear entirely from the Perth metropolitan area.  相似文献   

7.
We studied the effects of fragmentation (edge effects and patch size) and trampling (path cover) on carabid beetle assemblages in urban woodland patches in Helsinki, Finland. We expected that (1) open habitat and generalist species would benefit and forest species would suffer from increased woodland fragmentation, and (2) most carabid species would respond negatively to increased levels of trampling. A total of 2088 carabid individuals representing 37 species were collected. A cluster analysis distinguished sites in the interior of large woodland patches, with low or moderate path cover, from the other sites. The other sites did not cluster meaningfully, suggesting increased variation in the carabid fauna with increasing human impact. All species and ecological species-groups decreased with increasing distance from the edge toward the woodland interior and with increasing patch size. This pattern is in accordance with our expectation for open habitat and generalist species but opposite to what we expected for forest species. The reason for these surprising results may be that (1) the species we collected are not true forest interior species, (2) urban woodland edges are optimal habitats for many forest carabids, or (3) edges are actually sub-optimal, and high catches simply reflect increased activity of beetles moving away from the edge. Trampling did not have an overall negative effect on carabids as hypothesized. Species associated with moist forest habitat responded as predicted: they decreased in abundance with increasing path cover. Furthermore, open habitat species decreased with increasing path cover but more straightforward than we had predicted. Model elaboration, by dropping the highly trampled sites from the analyses, suggested that our data of high trampling may be too scarce: the results without these sites were more in accordance with our predictions than with the full dataset.  相似文献   

8.

Urban green areas have become an important tool for biodiversity conservation in cities. However, land use and the different management practices applied to these areas determine their effectiveness as biodiversity refuges within cities. In our study, we compare the biodiversity of three bioindicator groups of arthropods (ants, spiders and harvestmen) found in eleven urban green sites in Warsaw (Poland). The studied sites represent three categories of management: botanical gardens, public parks and urban woodlands. Our aim was to determine the effect of the type of management (as urban green categories) on arthropod communities in urban areas.

  相似文献   

9.

Predation by natural enemies is important for regulating herbivore abundance and herbivory. Theory predicts that complex habitats support more natural enemies, which exert top-down control over arthropods and therefore can reduce herbivory. However, it is unclear if theory developed in other more natural systems similarly apply to predation by vertebrate and invertebrate natural enemies across urban habitats of varying complexity. We used plasticine caterpillar models to assess risk of predation by birds and insects, collected leaf-feeding arthropods, and measured herbivory in willow oak trees (Quercus phellos) in two seasons to determine how predation influenced herbivory across urban forest fragments, street trees planted near forest fragments, and downtown street trees. Predation attempts by birds and abundance of chewing folivores were greater on trees growing in urban forest fragments than downtown street trees. Bird predation attempts and herbivory levels were inconsistent for near-forest trees. Predation attempts by arthropods did not statistically vary among the three urban tree habitats. Contrary to expectations based on theory, chewing folivore abundance and herbivory were generally highest on trees growing in urban forests, the most complex habitat we studied, and the habitat where risk of bird predation was greatest. We suggest that urban forest fragments provide better habitat than other urban landscapes for both urban birds and chewing folivores by having greater habitat complexity. Therefore, basal resources, such as availability of suitable habitat, mediate top-down effects on herbivores in cities.

  相似文献   

10.
Urbanization and other land cover changes have been particularly detrimental to wetlands throughout the planet. One wetland specialist that may be sensitive to land cover changes surrounding wetlands is the round-tailed muskrat (Neofiber alleni; hereafter RTM). The RTM is a wetland obligate rodent that appears to have declined over the last half century and is a species of concern in Florida, where it is a near endemic. To determine if urbanization or other land cover influenced the distribution of RTMs we took a multi-scaled approach to examine the occurrence of RTMs and their associated vegetation in North-Central Florida. We detected RTMs on 19 of 72 sample plots and used a Classification And Regression Tree (CART) to determine that dogfennel (Eupatorium capillifolium) was negatively associated with RTMs and maidencane (Panicum hemitomon) was positively associated with their occurrence on sampling plots. Examining the influence of landscape composition for 2 km surrounding our plots we found that RTM occurrence was negatively related to urban land cover. Further, we found that dogfennel increased and maidencane decreased as urbanization increased in the surrounding landscape. Our research suggests that conservation of RTMs and their associated vegetation should focus on limiting urban sprawl at least within 2 km of wetlands.  相似文献   

11.
Ailanthus altissima is an invasive, dioecious deciduous tree common at the interface between urban and rural areas in the mid-Atlantic region, U.S.A. To examine spatial patterns of abundance and associations with land use type, we mapped all mature female trees in nine 89.5 ha plots (805.5 ha total area) across a typical urban-to-rural land use gradient using aerial images obtained via remote sensing supplemented by detailed ground referencing. Rural plots were dominated by forest and had the lowest density of mature females (0.007 females ha−1); urban and suburban plots did not differ significantly in mean density (0.37 females ha−1 vs. 0.34 females ha−1, respectively). Individuals in urban plots were more evenly distributed, but were not associated with a wider variety of land uses and were closer to roads or openings than those in suburban plots. Given less available habitat per unit area in urban than in suburban environments, these patterns suggest that Ailanthus fits the profile of an invasive species that may be proliferating outward from urban centers. With continued disturbances associated with development in the suburban areas, and timber harvesting in the rural areas, further spread of Ailanthus seems likely.  相似文献   

12.
Urban development either eliminates, or severely fragments, native vegetation, and therefore alters the distribution and abundance of species that depend on it for habitat. We assessed the impact of urban development on bird communities at 121 sites in and around Perth, Western Australia. Based on data from community surveys, at least 83 % of 65 landbirds were found to be dependent, in some way, on the presence of native vegetation. For three groups of species defined by specific patterns of habitat use (bushland birds), there were sufficient data to show that species occurrences declined as the landscape changed from variegated to fragmented to relictual, according to the percentage of vegetation cover remaining. For three other groups (urban birds) species occurrences were either unrelated to the amount of vegetation cover, or increased as vegetation cover declined. In order to maximise the chances of retaining avian diversity when planning for broad-scale changes in land-use (i.e. clearing native vegetation for housing or industrial development), land planners should aim for a mosaic of variegated urban landscapes (>60 % vegetation retention) set amongst the fragmented and relictual urban landscapes (<60 % vegetation retention) that are characteristic of most cities and their suburbs. Management actions for conserving remnant biota within fragmented urban landscapes should concentrate on maintaining the integrity and quality of remnant native vegetation, and aim at building awareness among the general public of the conservation value of remnant native vegetation.  相似文献   

13.
Studies on bird fauna of urban environments have had a long history, but the potential of studies mapping the distribution of birds in cities probably has not fully developed. The bird fauna of the municipality of Valencia (Spain) was studied to determine the influence of urbanization on bird species richness and abundance. Birds were censused during winter and the breeding season of years 1997–1998 in 197 squares measuring 49 ha each from a rural and an urbanized area. Across seasons the number of species decreased around 40% in the city compared with the rural landscape surrounding it. Such pattern could be attributed to the low number of farmland species capable to use the habitats inside the city, and the limited ability of urban parks in attracting woodland species. In the urban landscape, the influence of the dimensions and spatial arrangement of habitat patches was outweighed by the amount of each habitat per square. Bird richness and the abundance of most species were negatively related with the amount of built-up habitat per square and positively with the amount of urban parks, and of habitat diversity. Conversely, bird fauna was largely independent of mean park size per square especially during winter, indicating that at the landscape scale even small patches of habitat could play an ecological role. Conservation of urban bird diversity could benefit of two complementary strategies: (i) the protection of the surrounding rural landscape from urban development; (ii) habitat enhancement within the city. Particularly, a proper design and habitat management of urban parks could improve their suitability for urban bird fauna.  相似文献   

14.

High population growth in the tropics is driving urbanisation, removing diverse natural ecosystems. This is causing native species to suffer while introduced synanthropes flourish. City planners are developing urban greenspace networks, in part trying to address this issue. Architects contribute to these greenspace networks by designing elevated and ground level green spaces on large-scale buildings. However, little evidence is available on whether building green spaces support native fauna. This is true for birds in tropical Singapore that support important ecosystem services and have existence value. Therefore, in this study, we conducted bird surveys and statistical analyses to determine, if and how vegetation on three building green space types (ground gardens, roof gardens and green walls) have a positive impact on native or introduced bird species. We found that elevated greenery (roof gardens and green walls) on large-scale buildings supported a higher richness of birds and abundance of urban native birds than control roofs and walls without vegetation. Ground gardens supported similar levels of native species as roof gardens but also a larger proportion of generalist synanthropes. However, we found no tropical forest habitat specialists across any space type. Therefore, we recommend roof gardens and ground gardens as a potential space for urban natives outside of a less competitive ground-level urban environment. Our study also found certain building design elements (height of elevated space, presence of specific plants) supported different species groups. Therefore, we suggest that these ecological requirements for different species groups are considered when designing a building’s green space.

  相似文献   

15.
Urbanization can alter the composition of arthropod communities. However, little is known about how urbanization affects ecological interactions. Using experimental colonies of the black bean aphid Aphis fabae Scopoli reared on Vicia faba L, we asked if patterns of predator-prey, host-parasitoid and ant-aphid mutualisms varied along an urbanization gradient across a large town in southern England. We recorded the presence of naturally occurring predators, parasitoid wasps and mutualistic ants together with aphid abundance. We examined how biotic (green areas and plant richness) and abiotic features (impervious surfaces and distance to town center) affected (1) aphid colony size, (2) the likelihood of finding predators, mutualistic ants and aphid mummies (indicating the presence of parasitoids), and (3) how the interplay among these factors affected patterns of parasitoid attack, predator abundance, mutualistic interactions and aphid abundance. Aphid abundance was best explained by the number of mutualistic ants attending the colonies. Aphid predators responded negatively to both the proportion of impervious surfaces and to the number of mutualistic ants farming the colonies, and positively to aphid population size, whereas parasitized aphids were found in colonies with higher numbers of aphids and ants. The number of mutualistic ants attending was positively associated with aphid colony size and negatively with the number of aphid predators. Our findings suggest that for insect-natural enemy interactions, urbanization may affect some groups, while not influencing others, and that local effects (mutualists, host plant presence) will also be key determinants of how urban ecological communities are formed.  相似文献   

16.
Wooded habitats represent hotspots of urban biodiversity, however, urban development imposes pressure on biota in these refuges. Identification of the most influential habitat attributes and the role of local urban characteristics is crucial for proper decisions on management practices supporting biodiversity. We aimed to identify well manageable fine-scale habitat attributes to suggest specific, feasible and affordable management recommendations for green space in cities. We analysed species richness of woodland-associated bird communities and incidence of individual species at 290 sites in a wide variety of green areas scattered across the city of Prague, Czech Republic. Generalized linear mixed models (GLMM) and regression tree analyses were used to identify site-scale (100 m radius sampling sites) and local-scale (200 m and 500 m radius plots) habitat attributes shaping the bird communities at individual sites. Logistic regression was used to assess the responses of individual species to habitat characteristics. Our results imply that at the site scale, management practices should focus on maintenance and promoting species-diverse and older tree stands, with a mixture of coniferous and deciduous trees. Water-bodies and accompanying riparian habitats should be maintained and carefully managed to preserve high-quality remnants of natural vegetation. Presence of a few old trees (about 12 % of tree cover with DBH?>?50 cm) or small urban standing water and watercourses enrich the bird community by at least two species. Species richness of woodland avifauna at particular sites is further supported by the total amount of tree cover in the surroundings, including scattered greenery of public spaces and private gardens. We conclude that proper management at site scale has the potential to increase biodiversity of the urban environment.  相似文献   

17.
The world has become an urban world, more than 50 % of the human population live in cities. The effects of urbanization are diverse, complex and wide; ranging from unbalanced biogeochemical cycles in urban areas, to the local extinction of several species in different cities around the globe. However, diverse biological groups live and thrive in cities adapting to the new and sometimes harsh conditions of urban areas. In an effort to compile and assess the current status of knowledge of copro-necrophagous beetles in urban areas, we performed an extensive search for publications regarding Scarabaeinae beetles in urban areas. We found 27 publication that address four general topics: (1) ecological patterns; (2) disease transmission; (3) conservation biology; and (4) species lists. Although in the last fifteen years it has been published extensively about Scarabaeinae as an indicator group in biodiversity studies and in the analysis of ecosystem functions, references to Scarabaeinae in cities are scarce. In a broad sense, the study of copro-necrophagous beetles in urban areas is in an early stage of advance, providing an opportunity for entomologists to explore their response to urbanization, altogether with the role of these insects as host and intermediates of parasitic diseases, but also, with the environmental services provided by them, like the burial and destruction of a great amount of excrements found in urban soil.  相似文献   

18.
Riparian areas in Arizona are being encroached upon by urban developments. This study investigated the impacts of different urban housing densities on riparian vegetation structure along ephemeral streams. Nine sites representing three levels of housing density were selected within the town of Marana, located in southeast Arizona. The housing densities were categorized as high (7–8 houses ha?1), moderate (2.5–4.5 houses ha?1), and low (< 1.5 houses ha?1). Each treatment had three replications. The urban developments were relatively young (less than 15 years). No significant differences were found among the treatments for the tree variables (density, height, mean canopy volume and total canopy volume) or the herbaceous vegetation variables (species richness, percentage of introduced species and percentage of ground cover). However, the shrub variables (mean density, mean height, mean canopy volume, total canopy volume and species richness) showed some significant differences. Shrub density and species richness was significantly greater adjacent to ephemeral channels than just three meters upland. In addition, whitethorn acacia shrubs were significantly taller and larger adjacent to the stream channels in the high and moderate housing density sites than in the low housing density sites. Creosote shrubs showed the opposite trend. Increased runoff in the more heavily urbanized streams may have promoted the growth of the facultative riparian species (whitethorn acacia) but not the non-riparian species (creosote). Overall, in these young developments, vegetation was resilient across the levels of urbanization explored in the study.  相似文献   

19.
We collected ants from six urban and one forest land-use types in Raleigh, NC to examine the effects of urbanization on species richness and assemblage composition. Since urban areas are warmer (i.e., heat island effect) we also tested if cities were inhabited by species from warmer/drier environments. Species richness was lower in industrial areas relative to other urban and natural environments. There are two distinct ant assemblages; 1) areas with thick canopy cover, and 2) more disturbed open urban areas. Native ant assemblages in open environments have more southwestern (i.e., warmer/drier) distributions than forest assemblages. High native species richness suggests that urban environments may allow species to persist that are disappearing from natural habitat fragments. The subset of species adapted to warmer/drier environments indicates that urban areas may facilitate the movement of some species. This suggests that urban adapted ants may be particularly successful at tracking future climate change.  相似文献   

20.
A central principle in urban ecological theory implies that in urbanized landscapes anthropogenic drivers will dominate natural drivers in the control of soil organic carbon storage (SOC). To assess the effect of urban land-use change on the storage of SOC, we compared SOC stocks of turf grass and native cover types of two metropolitan areas (Baltimore, MD, and Denver, CO) representing climatologically distinct regions in the United States. We hypothesized that introducing turf grass and management will lead to higher SOC densities in the arid Denver area and lower densities in the mesic Baltimore area relative to native cover types. Moreover, differences between turf grass soils will be less than differences between the native soils of each metropolitan region. Within Baltimore, turf grass had almost a 2-fold higher SOC density at 0- to 1-m and 0- to 20-cm depths than in rural forest soils, whereas there were no differences with soils of urban forest remnants. Moreover, urban forest remnants had more than 70% higher SOC densities than rural forest soils. Within Denver, turf grass (>25 years of age) had more than 2-fold higher SOC densities than in shortgrass steppe soils, while having similar densities to Baltimore turf grass soils. By contrast, the native soils of Baltimore were almost 2-fold higher than the native steppe grass soils of Denver using SOC densities of remnant forests as representative of native soils in the Baltimore region. These results supported our hypothesis that turf grass systems will be similar in SOC densities across regional variations in climate, parent material, and topography. These similarities are apparently due to greater management efforts in the Denver region to offset the constraint of climate, i.e., anthropogenic factors (management supplements) overwhelmed native environmental factors that control SOC storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号