首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Boag (1949) and Berkson and Gage (1952) proposed a mixture model for the analysis of survival time data when aproportion of treated patients are cured. This paper presents a derivation of the Boag/Berkson-Gage mixture model as well as a eneralization of the model based on the theory of competing risks. The assumptions underlying the model are stated and discussed and a general likelihood function is obtained. Use of the model is illustrated ith data from the Stanford Heart Transplant Program.  相似文献   

2.
This article studies a general joint model for longitudinal measurements and competing risks survival data. The model consists of a linear mixed effects sub-model for the longitudinal outcome, a proportional cause-specific hazards frailty sub-model for the competing risks survival data, and a regression sub-model for the variance–covariance matrix of the multivariate latent random effects based on a modified Cholesky decomposition. The model provides a useful approach to adjust for non-ignorable missing data due to dropout for the longitudinal outcome, enables analysis of the survival outcome with informative censoring and intermittently measured time-dependent covariates, as well as joint analysis of the longitudinal and survival outcomes. Unlike previously studied joint models, our model allows for heterogeneous random covariance matrices. It also offers a framework to assess the homogeneous covariance assumption of existing joint models. A Bayesian MCMC procedure is developed for parameter estimation and inference. Its performances and frequentist properties are investigated using simulations. A real data example is used to illustrate the usefulness of the approach.  相似文献   

3.
Competing risks data are routinely encountered in various medical applications due to the fact that patients may die from different causes. Recently, several models have been proposed for fitting such survival data. In this paper, we develop a fully specified subdistribution model for survival data in the presence of competing risks via a subdistribution model for the primary cause of death and conditional distributions for other causes of death. Various properties of this fully specified subdistribution model have been examined. An efficient Gibbs sampling algorithm via latent variables is developed to carry out posterior computations. Deviance information criterion (DIC) and logarithm of the pseudomarginal likelihood (LPML) are used for model comparison. An extensive simulation study is carried out to examine the performance of DIC and LPML in comparing the cause-specific hazards model, the mixture model, and the fully specified subdistribution model. The proposed methodology is applied to analyze a real dataset from a prostate cancer study in detail.  相似文献   

4.
Regression analysis for competing risks data can be based on generalized estimating equations. For the case with right censored data, pseudo-values were proposed to solve the estimating equations. In this article we investigate robustness of the pseudo-values against violation of the assumption that the probability of not being lost to follow-up (un-censored) is independent of the covariates. Modified pseudo-values are proposed which rely on a correctly specified regression model for the censoring times. Bias and efficiency of these methods are compared in a simulation study. Further illustration of the differences is obtained in an application to bone marrow transplantation data and a corresponding sensitivity analysis.  相似文献   

5.
Many biological and medical studies have as a response of interest the time to occurrence of some event,X, such as the occurrence of cessation of smoking, conception, a particular symptom or disease, remission, relapse, death due to some specific disease, or simply death. Often it is impossible to measureX due to the occurrence of some other competing event, usually termed a competing risk. This competing event may be the withdrawal of the subject from the study (for whatever reason), death from some cause other than the one of interest, or any eventuality that precludes the main event of interest from occurring. Usually the assumption is made that all such censoring times and lifetimes are independent. In this case one uses either the Kaplan-Meier estimator or the Nelson-Aalen estimator to estimate the survival function. However, if the competing risk or censoring times are not independent ofX, then there is no generally acceptable way to estimate the survival function. There has been considerable work devoted to this problem of dependent competing risks scattered throughout the statistical literature in the past several years and this paper presents a survey of such work.  相似文献   

6.
Identifying an optimal cutoff value for a continuous biomarker is often useful for medical applications. For binary outcome, commonly used cutoff finding criteria include Youden's index, classification accuracy, and the Euclidean distance to the upper left corner on the ROC curve. We extend these three criteria to accommodate censored survival time that subjected to competing risks. We provide various definitions of time-dependent true positive rate and false positive rate and estimate those quantities using nonparametric methods. In simulation studies, the Euclidean distance to the upper left corner on the ROC curve shows the best overall performance.  相似文献   

7.
The cumulative incidence function plays an important role in assessing its treatment and covariate effects with competing risks data. In this article, we consider an additive hazard model allowing the time-varying covariate effects for the subdistribution and propose the weighted estimating equation under the covariate-dependent censoring by fitting the Cox-type hazard model for the censoring distribution. When there exists some association between the censoring time and the covariates, the proposed coefficients’ estimations are unbiased and the large-sample properties are established. The finite-sample properties of the proposed estimators are examined in the simulation study. The proposed Cox-weighted method is applied to a competing risks dataset from a Hodgkin's disease study.  相似文献   

8.
The cumulative incidence function is of great importance in the analysis of survival data when competing risks are present. Parametric modeling of such functions, which are by nature improper, suggests the use of improper distributions. One frequently used improper distribution is that of Gompertz, which captures only monotone hazard shapes. In some applications, however, subdistribution hazard estimates have been observed with unimodal shapes. An extension to the Gompertz distribution is presented which can capture unimodal as well as monotone hazard shapes. Important properties of the proposed distribution are discussed, and the proposed distribution is used to analyze survival data from a breast cancer clinical trial.  相似文献   

9.
10.
Family-based follow-up study designs are important in epidemiology as they enable investigations of disease aggregation within families. Such studies are subject to methodological complications since data may include multiple endpoints as well as intra-family correlation. The methods herein are developed for the analysis of age of onset with multiple disease types for family-based follow-up studies. The proposed model expresses the marginalized frailty model in terms of the subdistribution hazards (SDH). As with Pipper and Martinussen’s (Scand J Stat 30:509–521, 2003) model, the proposed multivariate SDH model yields marginal interpretations of the regression coefficients while allowing the correlation structure to be specified by a frailty term. Further, the proposed model allows for a direct investigation of the covariate effects on the cumulative incidence function since the SDH is modeled rather than the cause specific hazard. A simulation study suggests that the proposed model generally offers improved performance in terms of bias and efficiency when a sufficient number of events is observed. The proposed model also offers type I error rates close to nominal. The method is applied to a family-based study of breast cancer when death in absence of breast cancer is considered a competing risk.  相似文献   

11.
In the competing risks set up with two dependent competing risks, the joint distribution of (X1,X2), the latent lifetimes of the system under the two risks, is not identifiable on the basis of the distribution of the actual observation (T, δ) where T = min(X1, X2) and δ = I(T=X1), Using Peterson's (1976) bounds, we have obtained conservative pointwise as well as simultaneous confidence bounds for the unidentifiable joint survival function. In an example we evaluate the confidence bounds and Indicate where the estimated joint survival function in the independent case, lies within them.  相似文献   

12.
We consider the semiparametric proportional hazards model for the cause-specific hazard function in analysis of competing risks data with missing cause of failure. The inverse probability weighted equation and augmented inverse probability weighted equation are proposed for estimating the regression parameters in the model, and their theoretical properties are established for inference. Simulation studies demonstrate that the augmented inverse probability weighted estimator is doubly robust and the proposed method is appropriate for practical use. The simulations also compare the proposed estimators with the multiple imputation estimator of Lu and Tsiatis (2001). The application of the proposed method is illustrated using data from a bone marrow transplant study.  相似文献   

13.
ABSTRACT

Competing risks data are common in medical research in which lifetime of individuals can be classified in terms of causes of failure. In survival or reliability studies, it is common that the patients (objects) are subjected to both left censoring and right censoring, which is refereed as double censoring. The analysis of doubly censored competing risks data in presence of covariates is the objective of this study. We propose a proportional hazards model for the analysis of doubly censored competing risks data, using the hazard rate functions of Gray (1988 Gray, R.J. (1988). A class of k-sample tests for comparing the cumulative incidence of a competing risk. Ann. Statist. 16:11411154.[Crossref], [Web of Science ®] [Google Scholar]), while focusing upon one major cause of failure. We derive estimators for regression parameter vector and cumulative baseline cause specific hazard rate function. Asymptotic properties of the estimators are discussed. A simulation study is conducted to assess the finite sample behavior of the proposed estimators. We illustrate the method using a real life doubly censored competing risks data.  相似文献   

14.
Recently, exact inference under hybrid censoring scheme has attracted extensive attention in the field of reliability analysis. However, most of the authors neglect the possibility of competing risks model. This paper mainly discusses the exact likelihood inference for the analysis of generalized type-I hybrid censoring data with exponential competing failure model. Based on the maximum likelihood estimates for unknown parameters, we establish the exact conditional distribution of parameters by conditional moment generating function, and then obtain moment properties as well as exact confidence intervals (CIs) for parameters. Furthermore, approximate CIs are constructed by asymptotic distribution and bootstrap method as well. We also compare their performances with exact method through the use of Monte Carlo simulations. And finally, a real data set is analysed to illustrate the validity of all the methods developed here.  相似文献   

15.
ABSTRACT

We present here an extension of Pan's multiple imputation approach to Cox regression in the setting of interval-censored competing risks data. The idea is to convert interval-censored data into multiple sets of complete or right-censored data and to use partial likelihood methods to analyse them. The process is iterated, and at each step, the coefficient of interest, its variance–covariance matrix, and the baseline cumulative incidence function are updated from multiple posterior estimates derived from the Fine and Gray sub-distribution hazards regression given augmented data. Through simulation of patients at risks of failure from two causes, and following a prescheduled programme allowing for informative interval-censoring mechanisms, we show that the proposed method results in more accurate coefficient estimates as compared to the simple imputation approach. We have implemented the method in the MIICD R package, available on the CRAN website.  相似文献   

16.
In survival and reliability studies, panel count data arise when we investigate a recurrent event process and each study subject is observed only at discrete time points. If recurrent events of several types are possible, we obtain panel count data with competing risks. Such data arise frequently from transversal studies on recurrent events in demography, epidemiology and reliability experiments where the individuals cannot be observed continuously. In the present paper, we propose an isotonic regression estimator for the cause specific mean function of the underlying recurrent event process of a competing risks panel count data. Further, a nonparametric test is proposed to compare the cause specific mean functions of the panel count competing risks data. Asymptotic properties of the proposed estimator and test statistic are studied. A simulation study is conducted to assess the finite sample behaviour of the proposed estimator and test statistic. Finally, the procedures developed are applied to a real data arising from skin cancer chemo prevention trial.  相似文献   

17.
Nonparametric estimators of component and system life distributions are developed and presented for situations where recurrent competing risks data from series systems are available. The use of recurrences of components’ failures leads to improved efficiencies in statistical inference, thereby leading to resource-efficient experimental or study designs or improved inferences about the distributions governing the event times. Finite and asymptotic properties of the estimators are obtained through simulation studies and analytically. The detrimental impact of parametric model misspecification is also vividly demonstrated, lending credence to the virtue of adopting nonparametric or semiparametric models, especially in biomedical settings. The estimators are illustrated by applying them to a data set pertaining to car repairs for vehicles that were under warranty.  相似文献   

18.
We present a flexible class of marginal models for the cumulative incidence function. The semiparametric transformation model is utilized in a decomposition for the marginal failure probabilities which extends previous work on Farewell's cure model. Novel estimation, inference and prediction procedures are developed, with large sample properties derived from the theory of martingales and U-statistics. A small simulation study demonstrates that the methods are appropriate for practical use. The methods are illustrated with a thorough analysis of a prostate cancer clinical trial. Simple graphical displays are used to check for the goodness of fit.  相似文献   

19.
The proportional hazards model is the most commonly used model in regression analysis of failure time data and has been discussed by many authors under various situations (Kalbfleisch & Prentice, 2002. The Statistical Analysis of Failure Time Data, Wiley, New York). This paper considers the fitting of the model to current status data when there exist competing risks, which often occurs in, for example, medical studies. The maximum likelihood estimates of the unknown parameters are derived and their consistency and convergence rate are established. Also we show that the estimates of regression coefficients are efficient and have asymptotically normal distributions. Simulation studies are conducted to assess the finite sample properties of the estimates and an illustrative example is provided. The Canadian Journal of Statistics © 2009 Statistical Society of Canada  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号