首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 772 毫秒
1.
Random effects model can account for the lack of fitting a regression model and increase precision of estimating area‐level means. However, in case that the synthetic mean provides accurate estimates, the prior distribution may inflate an estimation error. Thus, it is desirable to consider the uncertain prior distribution, which is expressed as the mixture of a one‐point distribution and a proper prior distribution. In this paper, we develop an empirical Bayes approach for estimating area‐level means, using the uncertain prior distribution in the context of a natural exponential family, which we call the empirical uncertain Bayes (EUB) method. The regression model considered in this paper includes the Poisson‐gamma and the binomial‐beta, and the normal‐normal (Fay–Herriot) model, which are typically used in small area estimation. We obtain the estimators of hyperparameters based on the marginal likelihood by using a well‐known expectation‐maximization algorithm and propose the EUB estimators of area means. For risk evaluation of the EUB estimator, we derive a second‐order unbiased estimator of a conditional mean squared error by using some techniques of numerical calculation. Through simulation studies and real data applications, we evaluate a performance of the EUB estimator and compare it with the usual empirical Bayes estimator.  相似文献   

2.
Bayesian methods are increasingly used in proof‐of‐concept studies. An important benefit of these methods is the potential to use informative priors, thereby reducing sample size. This is particularly relevant for treatment arms where there is a substantial amount of historical information such as placebo and active comparators. One issue with using an informative prior is the possibility of a mismatch between the informative prior and the observed data, referred to as prior‐data conflict. We focus on two methods for dealing with this: a testing approach and a mixture prior approach. The testing approach assesses prior‐data conflict by comparing the observed data to the prior predictive distribution and resorting to a non‐informative prior if prior‐data conflict is declared. The mixture prior approach uses a prior with a precise and diffuse component. We assess these approaches for the normal case via simulation and show they have some attractive features as compared with the standard one‐component informative prior. For example, when the discrepancy between the prior and the data is sufficiently marked, and intuitively, one feels less certain about the results, both the testing and mixture approaches typically yield wider posterior‐credible intervals than when there is no discrepancy. In contrast, when there is no discrepancy, the results of these approaches are typically similar to the standard approach. Whilst for any specific study, the operating characteristics of any selected approach should be assessed and agreed at the design stage; we believe these two approaches are each worthy of consideration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Quantile regression has gained increasing popularity as it provides richer information than the regular mean regression, and variable selection plays an important role in the quantile regression model building process, as it improves the prediction accuracy by choosing an appropriate subset of regression predictors. Unlike the traditional quantile regression, we consider the quantile as an unknown parameter and estimate it jointly with other regression coefficients. In particular, we adopt the Bayesian adaptive Lasso for the maximum entropy quantile regression. A flat prior is chosen for the quantile parameter due to the lack of information on it. The proposed method not only addresses the problem about which quantile would be the most probable one among all the candidates, but also reflects the inner relationship of the data through the estimated quantile. We develop an efficient Gibbs sampler algorithm and show that the performance of our proposed method is superior than the Bayesian adaptive Lasso and Bayesian Lasso through simulation studies and a real data analysis.  相似文献   

4.
Empirical Bayes is a versatile approach to “learn from a lot” in two ways: first, from a large number of variables and, second, from a potentially large amount of prior information, for example, stored in public repositories. We review applications of a variety of empirical Bayes methods to several well‐known model‐based prediction methods, including penalized regression, linear discriminant analysis, and Bayesian models with sparse or dense priors. We discuss “formal” empirical Bayes methods that maximize the marginal likelihood but also more informal approaches based on other data summaries. We contrast empirical Bayes to cross‐validation and full Bayes and discuss hybrid approaches. To study the relation between the quality of an empirical Bayes estimator and p, the number of variables, we consider a simple empirical Bayes estimator in a linear model setting. We argue that empirical Bayes is particularly useful when the prior contains multiple parameters, which model a priori information on variables termed “co‐data”. In particular, we present two novel examples that allow for co‐data: first, a Bayesian spike‐and‐slab setting that facilitates inclusion of multiple co‐data sources and types and, second, a hybrid empirical Bayes–full Bayes ridge regression approach for estimation of the posterior predictive interval.  相似文献   

5.
When Gaussian errors are inappropriate in a multivariate linear regression setting, it is often assumed that the errors are iid from a distribution that is a scale mixture of multivariate normals. Combining this robust regression model with a default prior on the unknown parameters results in a highly intractable posterior density. Fortunately, there is a simple data augmentation (DA) algorithm and a corresponding Haar PX‐DA algorithm that can be used to explore this posterior. This paper provides conditions (on the mixing density) for geometric ergodicity of the Markov chains underlying these Markov chain Monte Carlo algorithms. Letting d denote the dimension of the response, the main result shows that the DA and Haar PX‐DA Markov chains are geometrically ergodic whenever the mixing density is generalized inverse Gaussian, log‐normal, inverted Gamma (with shape parameter larger than d /2) or Fréchet (with shape parameter larger than d /2). The results also apply to certain subsets of the Gamma, F and Weibull families.  相似文献   

6.
We propose a new model for regression and dependence analysis when addressing spatial data with possibly heavy tails and an asymmetric marginal distribution. We first propose a stationary process with t marginals obtained through scale mixing of a Gaussian process with an inverse square root process with Gamma marginals. We then generalize this construction by considering a skew‐Gaussian process, thus obtaining a process with skew‐t marginal distributions. For the proposed (skew) t process, we study the second‐order and geometrical properties and in the t case, we provide analytic expressions for the bivariate distribution. In an extensive simulation study, we investigate the use of the weighted pairwise likelihood as a method of estimation for the t process. Moreover we compare the performance of the optimal linear predictor of the t process versus the optimal Gaussian predictor. Finally, the effectiveness of our methodology is illustrated by analyzing a georeferenced dataset on maximum temperatures in Australia.  相似文献   

7.
In this article the author investigates the application of the empirical‐likelihood‐based inference for the parameters of varying‐coefficient single‐index model (VCSIM). Unlike the usual cases, if there is no bias correction the asymptotic distribution of the empirical likelihood ratio cannot achieve the standard chi‐squared distribution. To this end, a bias‐corrected empirical likelihood method is employed to construct the confidence regions (intervals) of regression parameters, which have two advantages, compared with those based on normal approximation, that is, (1) they do not impose prior constraints on the shape of the regions; (2) they do not require the construction of a pivotal quantity and the regions are range preserving and transformation respecting. A simulation study is undertaken to compare the empirical likelihood with the normal approximation in terms of coverage accuracies and average areas/lengths of confidence regions/intervals. A real data example is given to illustrate the proposed approach. The Canadian Journal of Statistics 38: 434–452; 2010 © 2010 Statistical Society of Canada  相似文献   

8.
The author extends to the Bayesian nonparametric context the multinomial goodness‐of‐fit tests due to Cressie & Read (1984). Her approach is suitable when the model of interest is a discrete distribution. She provides an explicit form for the tests, which are based on power‐divergence measures between a prior Dirichlet process that is highly concentrated around the model of interest and the corresponding posterior Dirichlet process. In addition to providing interesting special cases and useful approximations, she discusses calibration and the choice of test through examples.  相似文献   

9.
Abstract. We study the Jeffreys prior and its properties for the shape parameter of univariate skew‐t distributions with linear and nonlinear Student's t skewing functions. In both cases, we show that the resulting priors for the shape parameter are symmetric around zero and proper. Moreover, we propose a Student's t approximation of the Jeffreys prior that makes an objective Bayesian analysis easy to perform. We carry out a Monte Carlo simulation study that demonstrates an overall better behaviour of the maximum a posteriori estimator compared with the maximum likelihood estimator. We also compare the frequentist coverage of the credible intervals based on the Jeffreys prior and its approximation and show that they are similar. We further discuss location‐scale models under scale mixtures of skew‐normal distributions and show some conditions for the existence of the posterior distribution and its moments. Finally, we present three numerical examples to illustrate the implications of our results on inference for skew‐t distributions.  相似文献   

10.
We discuss a class of difference‐based estimators for the autocovariance in nonparametric regression when the signal is discontinuous and the errors form a stationary m‐dependent process. These estimators circumvent the particularly challenging task of pre‐estimating such an unknown regression function. We provide finite‐sample expressions of their mean squared errors for piecewise constant signals and Gaussian errors. Based on this, we derive biased‐optimized estimates that do not depend on the unknown autocovariance structure. Notably, for positively correlated errors, that part of the variance of our estimators that depend on the signal is minimal as well. Further, we provide sufficient conditions for ‐consistency; this result is extended to piecewise Hölder regression with non‐Gaussian errors. We combine our biased‐optimized autocovariance estimates with a projection‐based approach and derive covariance matrix estimates, a method that is of independent interest. An R package, several simulations and an application to biophysical measurements complement this paper.  相似文献   

11.
Prior information is often incorporated informally when planning a clinical trial. Here, we present an approach on how to incorporate prior information, such as data from historical clinical trials, into the nuisance parameter–based sample size re‐estimation in a design with an internal pilot study. We focus on trials with continuous endpoints in which the outcome variance is the nuisance parameter. For planning and analyzing the trial, frequentist methods are considered. Moreover, the external information on the variance is summarized by the Bayesian meta‐analytic‐predictive approach. To incorporate external information into the sample size re‐estimation, we propose to update the meta‐analytic‐predictive prior based on the results of the internal pilot study and to re‐estimate the sample size using an estimator from the posterior. By means of a simulation study, we compare the operating characteristics such as power and sample size distribution of the proposed procedure with the traditional sample size re‐estimation approach that uses the pooled variance estimator. The simulation study shows that, if no prior‐data conflict is present, incorporating external information into the sample size re‐estimation improves the operating characteristics compared to the traditional approach. In the case of a prior‐data conflict, that is, when the variance of the ongoing clinical trial is unequal to the prior location, the performance of the traditional sample size re‐estimation procedure is in general superior, even when the prior information is robustified. When considering to include prior information in sample size re‐estimation, the potential gains should be balanced against the risks.  相似文献   

12.
Abstract. Non‐parametric regression models have been studied well including estimating the conditional mean function, the conditional variance function and the distribution function of errors. In addition, empirical likelihood methods have been proposed to construct confidence intervals for the conditional mean and variance. Motivated by applications in risk management, we propose an empirical likelihood method for constructing a confidence interval for the pth conditional value‐at‐risk based on the non‐parametric regression model. A simulation study shows the advantages of the proposed method.  相似文献   

13.
Abstract. In this article, we propose a new parametric family of models for real‐valued spatio‐temporal stochastic processes S ( x , t ) and show how low‐rank approximations can be used to overcome the computational problems that arise in fitting the proposed class of models to large datasets. Separable covariance models, in which the spatio‐temporal covariance function of S ( x , t ) factorizes into a product of purely spatial and purely temporal functions, are often used as a convenient working assumption but are too inflexible to cover the range of covariance structures encountered in applications. We define positive and negative non‐separability and show that in our proposed family we can capture positive, zero and negative non‐separability by varying the value of a single parameter.  相似文献   

14.
Assessing the absolute risk for a future disease event in presently healthy individuals has an important role in the primary prevention of cardiovascular diseases (CVD) and other chronic conditions. In this paper, we study the use of non‐parametric Bayesian hazard regression techniques and posterior predictive inferences in the risk assessment task. We generalize our previously published Bayesian multivariate monotonic regression procedure to a survival analysis setting, combined with a computationally efficient estimation procedure utilizing case–base sampling. To achieve parsimony in the model fit, we allow for multidimensional relationships within specified subsets of risk factors, determined either on a priori basis or as a part of the estimation procedure. We apply the proposed methods for 10‐year CVD risk assessment in a Finnish population. © 2014 Board of the Foundation of the Scandinavian Journal of Statistics  相似文献   

15.
In this paper, we introduce the subdistribution beta‐Stacy process, a novel Bayesian nonparametric process prior for subdistribution functions useful for the analysis of competing risks data. In particular, we (i) characterize this process from a predictive perspective by means of an urn model with reinforcement, (ii) show that it is conjugate with respect to right‐censored data, and (iii) highlight its relations with other prior processes for competing risks data. Additionally, we consider the subdistribution beta‐Stacy process prior in a nonparametric regression model for competing risks data, which, contrary to most others available in the literature, is not based on the proportional hazards assumption.  相似文献   

16.
There exists a recent study where dynamic mixed‐effects regression models for count data have been extended to a semi‐parametric context. However, when one deals with other discrete data such as binary responses, the results based on count data models are not directly applicable. In this paper, we therefore begin with existing binary dynamic mixed models and generalise them to the semi‐parametric context. For inference, we use a new semi‐parametric conditional quasi‐likelihood (SCQL) approach for the estimation of the non‐parametric function involved in the semi‐parametric model, and a semi‐parametric generalised quasi‐likelihood (SGQL) approach for the estimation of the main regression, dynamic dependence and random effects variance parameters. A semi‐parametric maximum likelihood (SML) approach is also used as a comparison to the SGQL approach. The properties of the estimators are examined both asymptotically and empirically. More specifically, the consistency of the estimators is established and finite sample performances of the estimators are examined through an intensive simulation study.  相似文献   

17.
In many experiments, not all explanatory variables can be controlled. When the units arise sequentially, different approaches may be used. The authors study a natural sequential procedure for “marginally restricted” D‐optimal designs. They assume that one set of explanatory variables (x1) is observed sequentially, and that the experimenter responds by choosing an appropriate value of the explanatory variable x2. In order to solve the sequential problem a priori, the authors consider the problem of constructing optimal designs with a prior marginal distribution for x1. This eliminates the influence of units already observed on the next unit to be designed. They give explicit designs for various cases in which the mean response follows a linear regression model; they also consider a case study with a nonlinear logistic response. They find that the optimal strategy often consists of randomizing the assignment of the values of x2.  相似文献   

18.
In this paper, we introduce a new risk measure, the so‐called conditional tail moment. It is defined as the moment of order a ≥ 0 of the loss distribution above the upper α‐quantile where α ∈ (0,1). Estimating the conditional tail moment permits us to estimate all risk measures based on conditional moments such as conditional tail expectation, conditional value at risk or conditional tail variance. Here, we focus on the estimation of these risk measures in case of extreme losses (where α ↓0 is no longer fixed). It is moreover assumed that the loss distribution is heavy tailed and depends on a covariate. The estimation method thus combines non‐parametric kernel methods with extreme‐value statistics. The asymptotic distribution of the estimators is established, and their finite‐sample behaviour is illustrated both on simulated data and on a real data set of daily rainfalls.  相似文献   

19.
The Nadaraya–Watson estimator is among the most studied nonparametric regression methods. A classical result is that its convergence rate depends on the number of covariates and deteriorates quickly as the dimension grows. This underscores the “curse of dimensionality” and has limited its use in high‐dimensional settings. In this paper, however, we show that the Nadaraya–Watson estimator has an oracle property such that when the true regression function is single‐ or multi‐index, it discovers the low‐rank dependence structure between the response and the covariates, mitigating the curse of dimensionality. Specifically, we prove that, using K‐fold cross‐validation and a positive‐semidefinite bandwidth matrix, the Nadaraya–Watson estimator has a convergence rate that depends on the number of indices rather than on the number of covariates. This result follows by allowing the bandwidths to diverge to infinity rather than restricting them all to converge to zero at certain rates, as in previous theoretical studies.  相似文献   

20.
In the classical discriminant analysis, when two multivariate normal distributions with equal variance–covariance matrices are assumed for two groups, the classical linear discriminant function is optimal with respect to maximizing the standardized difference between the means of two groups. However, for a typical case‐control study, the distributional assumption for the case group often needs to be relaxed in practice. Komori et al. (Generalized t ‐statistic for two‐group classification. Biometrics 2015, 71: 404–416) proposed the generalized t ‐statistic to obtain a linear discriminant function, which allows for heterogeneity of case group. Their procedure has an optimality property in the class of consideration. We perform a further study of the problem and show that additional improvement is achievable. The approach we propose does not require a parametric distributional assumption on the case group. We further show that the new estimator is efficient, in that no further improvement is possible to construct the linear discriminant function more efficiently. We conduct simulation studies and real data examples to illustrate the finite sample performance and the gain that it produces in comparison with existing methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号