首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider the problem of selecting variables in factor analysis models. The $L_1$ regularization procedure is introduced to perform an automatic variable selection. In the factor analysis model, each variable is controlled by multiple factors when there are more than one underlying factor. We treat parameters corresponding to the multiple factors as grouped parameters, and then apply the group lasso. Furthermore, the weight of the group lasso penalty is modified to obtain appropriate estimates and improve the performance of variable selection. Crucial issues in this modeling procedure include the selection of the number of factors and a regularization parameter. Choosing these parameters can be viewed as a model selection and evaluation problem. We derive a model selection criterion for evaluating the factor analysis model via the weighted group lasso. Monte Carlo simulations are conducted to investigate the effectiveness of the proposed procedure. A real data example is also given to illustrate our procedure. The Canadian Journal of Statistics 40: 345–361; 2012 © 2012 Statistical Society of Canada  相似文献   

2.
Sparsity-inducing penalties are useful tools for variable selection and are also effective for regression problems where the data are functions. We consider the problem of selecting not only variables but also decision boundaries in multiclass logistic regression models for functional data, using sparse regularization. The parameters of the functional logistic regression model are estimated in the framework of the penalized likelihood method with the sparse group lasso-type penalty, and then tuning parameters for the model are selected using the model selection criterion. The effectiveness of the proposed method is investigated through simulation studies and the analysis of a gene expression data set.  相似文献   

3.
The varying coefficient model (VCM) is an important generalization of the linear regression model and many existing estimation procedures for VCM were built on L 2 loss, which is popular for its mathematical beauty but is not robust to non-normal errors and outliers. In this paper, we address the problem of both robustness and efficiency of estimation and variable selection procedure based on the convex combined loss of L 1 and L 2 instead of only quadratic loss for VCM. By using local linear modeling method, the asymptotic normality of estimation is driven and a useful selection method is proposed for the weight of composite L 1 and L 2. Then the variable selection procedure is given by combining local kernel smoothing with adaptive group LASSO. With appropriate selection of tuning parameters by Bayesian information criterion (BIC) the theoretical properties of the new procedure, including consistency in variable selection and the oracle property in estimation, are established. The finite sample performance of the new method is investigated through simulation studies and the analysis of body fat data. Numerical studies show that the new method is better than or at least as well as the least square-based method in terms of both robustness and efficiency for variable selection.  相似文献   

4.
ABSTRACT

Functional linear model is of great practical importance, as exemplified by applications in high-throughput studies such as meteorological and biomedical research. In this paper, we propose a new functional variable selection procedure, called functional variable selection via Gram–Schmidt (FGS) orthogonalization, for a functional linear model with a scalar response and multiple functional predictors. Instead of the regularization methods, FGS takes into account the similarity between the functional predictors in a data-driven way and utilizes the technique of Gram–Schmidt orthogonalization to remove the irrelevant predictors. FGS can successfully discriminate between the relevant and the irrelevant functional predictors to achieve a high true positive ratio without including many irrelevant predictors, and yield explainable models, which offers a new perspective for the variable selection method in the functional linear model. Simulation studies are carried out to evaluate the finite sample performance of the proposed method, and also a weather data set is analysed.  相似文献   

5.
Although the t-type estimator is a kind of M-estimator with scale optimization, it has some advantages over the M-estimator. In this article, we first propose a t-type joint generalized linear model as a robust extension to the classical joint generalized linear models for modeling data containing extreme or outlying observations. Next, we develop a t-type pseudo-likelihood (TPL) approach, which can be viewed as a robust version to the existing pseudo-likelihood (PL) approach. To determine which variables significantly affect the variance of the response variable, we then propose a unified penalized maximum TPL method to simultaneously select significant variables for the mean and dispersion models in t-type joint generalized linear models. Thus, the proposed variable selection method can simultaneously perform parameter estimation and variable selection in the mean and dispersion models. With appropriate selection of the tuning parameters, we establish the consistency and the oracle property of the regularized estimators. Simulation studies are conducted to illustrate the proposed methods.  相似文献   

6.
This paper considers a linear regression model with regression parameter vector β. The parameter of interest is θ= aTβ where a is specified. When, as a first step, a data‐based variable selection (e.g. minimum Akaike information criterion) is used to select a model, it is common statistical practice to then carry out inference about θ, using the same data, based on the (false) assumption that the selected model had been provided a priori. The paper considers a confidence interval for θ with nominal coverage 1 ‐ α constructed on this (false) assumption, and calls this the naive 1 ‐ α confidence interval. The minimum coverage probability of this confidence interval can be calculated for simple variable selection procedures involving only a single variable. However, the kinds of variable selection procedures used in practice are typically much more complicated. For the real‐life data presented in this paper, there are 20 variables each of which is to be either included or not, leading to 220 different models. The coverage probability at any given value of the parameters provides an upper bound on the minimum coverage probability of the naive confidence interval. This paper derives a new Monte Carlo simulation estimator of the coverage probability, which uses conditioning for variance reduction. For these real‐life data, the gain in efficiency of this Monte Carlo simulation due to conditioning ranged from 2 to 6. The paper also presents a simple one‐dimensional search strategy for parameter values at which the coverage probability is relatively small. For these real‐life data, this search leads to parameter values for which the coverage probability of the naive 0.95 confidence interval is 0.79 for variable selection using the Akaike information criterion and 0.70 for variable selection using Bayes information criterion, showing that these confidence intervals are completely inadequate.  相似文献   

7.
We address the problem of recovering a common set of covariates that are relevant simultaneously to several classification problems. By penalizing the sum of 2 norms of the blocks of coefficients associated with each covariate across different classification problems, similar sparsity patterns in all models are encouraged. To take computational advantage of the sparsity of solutions at high regularization levels, we propose a blockwise path-following scheme that approximately traces the regularization path. As the regularization coefficient decreases, the algorithm maintains and updates concurrently a growing set of covariates that are simultaneously active for all problems. We also show how to use random projections to extend this approach to the problem of joint subspace selection, where multiple predictors are found in a common low-dimensional subspace. We present theoretical results showing that this random projection approach converges to the solution yielded by trace-norm regularization. Finally, we present a variety of experimental results exploring joint covariate selection and joint subspace selection, comparing the path-following approach to competing algorithms in terms of prediction accuracy and running time.  相似文献   

8.
Abstract

In this article, we propose a new penalized-likelihood method to conduct model selection for finite mixture of regression models. The penalties are imposed on mixing proportions and regression coefficients, and hence order selection of the mixture and the variable selection in each component can be simultaneously conducted. The consistency of order selection and the consistency of variable selection are investigated. A modified EM algorithm is proposed to maximize the penalized log-likelihood function. Numerical simulations are conducted to demonstrate the finite sample performance of the estimation procedure. The proposed methodology is further illustrated via real data analysis.  相似文献   

9.
In this article, we consider the problem of selecting functional variables using the L1 regularization in a functional linear regression model with a scalar response and functional predictors, in the presence of outliers. Since the LASSO is a special case of the penalized least-square regression with L1 penalty function, it suffers from the heavy-tailed errors and/or outliers in data. Recently, Least Absolute Deviation (LAD) and the LASSO methods have been combined (the LAD-LASSO regression method) to carry out robust parameter estimation and variable selection simultaneously for a multiple linear regression model. However, variable selection of the functional predictors based on LASSO fails since multiple parameters exist for a functional predictor. Therefore, group LASSO is used for selecting functional predictors since group LASSO selects grouped variables rather than individual variables. In this study, we propose a robust functional predictor selection method, the LAD-group LASSO, for a functional linear regression model with a scalar response and functional predictors. We illustrate the performance of the LAD-group LASSO on both simulated and real data.  相似文献   

10.
Abstract. We consider a function defined as the pointwise minimization of a doubly index random process. We are interested in the weak convergence of the minimizer in the space of bounded functions. Such convergence results can be applied in the context of penalized M‐estimation, that is, when the random process to minimize is expressed as a goodness‐of‐fit term plus a penalty term multiplied by a penalty weight. This weight is called the regularization parameter and the minimizing function the regularization path. The regularization path can be seen as a collection of estimators indexed by the regularization parameter. We obtain a consistency result and a central limit theorem for the regularization path in a functional sense. Various examples are provided, including the ?1‐regularization path for general linear models, the ?1‐ or ?2‐regularization path of the least absolute deviation regression and the Akaike information criterion.  相似文献   

11.
Stepwise methods for variable selection are frequently used to determine the predictors of an outcome in generalized linear models. Although it is widely used within the scientific community, it is well known that the tests on the explained deviance of the selected model are biased. This arises from the fact that the traditional test statistics upon which these methods are based were intended for testing pre-specified hypotheses; instead, the tested model is selected through a data-driven procedure. A multiplicity problem therefore arises. In this work, we define and discuss a nonparametric procedure to adjust the p-value of the selected model of any stepwise selection method. The unbiasedness and consistency of the method is also proved. A simulation study shows the validity of this procedure. Theoretical differences with previous works in the same field are also discussed.  相似文献   

12.
G. Aneiros  F. Ferraty  P. Vieu 《Statistics》2015,49(6):1322-1347
The problem of variable selection is considered in high-dimensional partial linear regression under some model allowing for possibly functional variable. The procedure studied is that of nonconcave-penalized least squares. It is shown the existence of a √n/sn-consistent estimator for the vector of pn linear parameters in the model, even when pn tends to ∞ as the sample size n increases (sn denotes the number of influential variables). An oracle property is also obtained for the variable selection method, and the nonparametric rate of convergence is stated for the estimator of the nonlinear functional component of the model. Finally, a simulation study illustrates the finite sample size performance of our procedure.  相似文献   

13.
This paper focuses on the variable selection for semiparametric varying coefficient partially linear model when the covariates are measured with additive errors and the response is missing. An adaptive lasso estimator and the smoothly clipped absolute deviation estimator as a comparison for the parameters are proposed. With the proper selection of regularization parameter, the sampling properties including the consistency of the two procedures and the oracle properties are established. Furthermore, the algorithms and corresponding standard error formulas are discussed. A simulation study is carried out to assess the finite sample performance of the proposed methods.  相似文献   

14.
The high-dimensional data arises in diverse fields of sciences, engineering and humanities. Variable selection plays an important role in dealing with high dimensional statistical modelling. In this article, we study the variable selection of quadratic approximation via the smoothly clipped absolute deviation (SCAD) penalty with a diverging number of parameters. We provide a unified method to select variables and estimate parameters for various of high dimensional models. Under appropriate conditions and with a proper regularization parameter, we show that the estimator has consistency and sparsity, and the estimators of nonzero coefficients enjoy the asymptotic normality as they would have if the zero coefficients were known in advance. In addition, under some mild conditions, we can obtain the global solution of the penalized objective function with the SCAD penalty. Numerical studies and a real data analysis are carried out to confirm the performance of the proposed method.  相似文献   

15.
Abstract

In the model selection problem, the consistency of the selection criterion has been often discussed. This paper derives a family of criteria based on a robust statistical divergence family by using a generalized Bayesian procedure. The proposed family can achieve both consistency and robustness at the same time since it has good performance with respect to contamination by outliers under appropriate circumstances. We show the selection accuracy of the proposed criterion family compared with the conventional methods through numerical experiments.  相似文献   

16.
In many practical applications, high-dimensional regression analyses have to take into account measurement error in the covariates. It is thus necessary to extend regularization methods, that can handle the situation where the number of covariates p largely exceed the sample size n, to the case in which covariates are also mismeasured. A variety of methods are available in this context, but many of them rely on knowledge about the measurement error and the structure of its covariance matrix. In this paper, we set the goal to compare some of these methods, focusing on situations relevant for practical applications. In particular, we will evaluate these methods in setups in which the measurement error distribution and dependence structure are not known and have to be estimated from data. Our focus is on variable selection, and the evaluation is based on extensive simulations.  相似文献   

17.
We propose a new criterion for model selection in prediction problems. The covariance inflation criterion adjusts the training error by the average covariance of the predictions and responses, when the prediction rule is applied to permuted versions of the data set. This criterion can be applied to general prediction problems (e.g. regression or classification) and to general prediction rules (e.g. stepwise regression, tree-based models and neural nets). As a by-product we obtain a measure of the effective number of parameters used by an adaptive procedure. We relate the covariance inflation criterion to other model selection procedures and illustrate its use in some regression and classification problems. We also revisit the conditional bootstrap approach to model selection.  相似文献   

18.
We address the problem of robust model selection for finite memory stochastic processes. Consider m independent samples, with most of them being realizations of the same stochastic process with law Q, which is the one we want to retrieve. We define the asymptotic breakdown point γ for a model selection procedure and also we devise a model selection procedure. We compute the value of γ which is 0.5, when all the processes are Markovian. This result is valid for any family of finite order Markov models but for simplicity we will focus on the family of variable length Markov chains.  相似文献   

19.
Consider using values of variables X 1, X 2,…, X p to classify entities into one of two classes. Kernel-based procedures such as support vector machines (SVMs) are well suited for this task. In general, the classification accuracy of SVMs can be substantially improved if instead of all p candidate variables, a smaller subset of (say m) variables is used. A new two-step approach to variable selection for SVMs is therefore proposed: best variable subsets of size k = 1,2,…, p are first identified, and then a new data-dependent criterion is used to determine a value for m. The new approach is evaluated in a Monte Carlo simulation study, and on a sample of data sets.  相似文献   

20.
As a flexible alternative to the Cox model, the accelerated failure time (AFT) model assumes that the event time of interest depends on the covariates through a regression function. The AFT model with non‐parametric covariate effects is investigated, when variable selection is desired along with estimation. Formulated in the framework of the smoothing spline analysis of variance model, the proposed method based on the Stute estimate ( Stute, 1993 [Consistent estimation under random censorship when covariables are present, J. Multivariate Anal. 45 , 89–103]) can achieve a sparse representation of the functional decomposition, by utilizing a reproducing kernel Hilbert norm penalty. Computational algorithms and theoretical properties of the proposed method are investigated. The finite sample size performance of the proposed approach is assessed via simulation studies. The primary biliary cirrhosis data is analyzed for demonstration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号