首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Marginal hazard models for multivariate failure time data have been studied extensively in recent literature. However, standard hypothesis test statistics based on the likelihood method are not exactly appropriate for this kind of model. In this paper, extensions of the three commonly used likelihood hypothesis test statistics are discussed. Generalized Wald, generalized score and generalized likelihood ratio tests for hazard ratio parameters in a marginal hazard model for multivariate failure time data are proposed and their asymptotic distributions examined. The finite sample properties of these statistics are studied through simulations. The proposed method is applied to data from Busselton Population Health Surveys.  相似文献   

2.
On Goodness-of-Fit Tests for Aalen's Additive Risk Model   总被引:2,自引:0,他引:2  
Abstract.  In this paper we propose goodness-of-fit tests for Aalen's additive risk model. They are based on test statistics the asymptotic distributions of which are determined under both the null and alternative hypotheses. The results are derived using martingale techniques for counting processes. An important feature of these tests is that they can be adjusted to particular alternatives. One of the alternatives we consider is Cox's multiplicative risk model. It is perhaps remarkable that such a test needs no estimate of the baseline hazard in the Cox model. We present simulation studies which give an impression of the performance of the proposed tests. In addition, the tests are applied to real data sets.  相似文献   

3.
The periodic multiplicative intensity model is considered. A new bootstrap method for non stationary counting processes which intensity function has some periodicity properties is presented. Its main advantage is that it does not destroy the temporal order and the original periodicity of the underlying counting process. The proposed algorithm is used to construct a bootstrap version of the maximum likelihood hazard function estimator. The consistency of the bootstrap method is shown. A possible modification of the proposed bootstrap method is discussed. The bootstrap simultaneous confidence intervals for the hazard function are presented. The telecommunication network traffic real data example is discussed.  相似文献   

4.
There have been numerous tests proposed to determine whether or not the exponential model is suitable for a given data set. In this article, we propose a new test statistic based on spacings to test whether the general progressive Type-II censored samples are from exponential distribution. The null distribution of the test statistic is discussed and it could be approximated by the standard normal distribution. Meanwhile, we propose an approximate method for calculating the expectation and variance of samples under null hypothesis and corresponding power function is also given. Then, a simulation study is conducted. We calculate the approximation of the power based on normality and compare the results with those obtained by Monte Carlo simulation under different alternatives with distinct types of hazard function. Results of simulation study disclose that the power properties of this statistic by using Monte Carlo simulation are better for the alternatives with monotone increasing hazard function, and otherwise, normal approximation simulation results are relatively better. Finally, two illustrative examples are presented.  相似文献   

5.
Thispaper considers the stratified proportional hazards model witha focus on the assessment of stratum effects. The assessmentof such effects is often of interest, for example, in clinicaltrials. In this case, two relevant tests are the test of stratuminteraction with covariates and the test of stratum interactionwith baseline hazard functions. For the test of stratum interactionwith covariates, one can use the partial likelihood method (Kalbfleischand Prentice, 1980; Lin, 1994). For the test of stratum interactionwith baseline hazard functions, however, there seems to be noformal test available. We consider this problem and propose aclass of nonparametric tests. The asymptotic distributions ofthe tests are derived using the martingale theory. The proposedtests can also be used for survival comparisons which need tobe adjusted for covariate effects. The method is illustratedwith data from a lung cancer clinical trial.  相似文献   

6.
In the analysis of survival times, the logrank test and the Cox model have been established as key tools, which do not require specific distributional assumptions. Under the assumption of proportional hazards, they are efficient and their results can be interpreted unambiguously. However, delayed treatment effects, disease progression, treatment switchers or the presence of subgroups with differential treatment effects may challenge the assumption of proportional hazards. In practice, weighted logrank tests emphasizing either early, intermediate or late event times via an appropriate weighting function may be used to accommodate for an expected pattern of non-proportionality. We model these sources of non-proportional hazards via a mixture of survival functions with piecewise constant hazard. The model is then applied to study the power of unweighted and weighted log-rank tests, as well as maximum tests allowing different time dependent weights. Simulation results suggest a robust performance of maximum tests across different scenarios, with little loss in power compared to the most powerful among the considered weighting schemes and huge power gain compared to unfavorable weights. The actual sources of non-proportional hazards are not obvious from resulting populationwise survival functions, highlighting the importance of detailed simulations in the planning phase of a trial when assuming non-proportional hazards.We provide the required tools in a software package, allowing to model data generating processes under complex non-proportional hazard scenarios, to simulate data from these models and to perform the weighted logrank tests.  相似文献   

7.
In this paper we introduce a new three-parameter exponential-type distribution. The new distribution is quite flexible and can be used effectively in modeling survival data and reliability problems. It can have constant, decreasing, increasing, upside-down bathtub and bathtub-shaped hazard rate functions. It also generalizes some well-known distributions. We discuss maximum likelihood estimation of the model parameters for complete sample and for censored sample. Additionally, we formulate a new cure rate survival model by assuming that the number of competing causes of the event of interest has the Poisson distribution and the time to this event follows the proposed distribution. Maximum likelihood estimation of the model parameters of the new cure rate survival model is discussed for complete sample and censored sample. Two applications to real data are provided to illustrate the flexibility of the new model in practice.  相似文献   

8.
In this paper, a discrete counterpart of the general class of continuous beta-G distributions is introduced. A discrete analog of the beta generalized exponential distribution of Barreto-Souza et al. [2], as an important special case of the proposed class, is studied. This new distribution contains some previously known discrete distributions as well as two new models. The hazard rate function of the new model can be increasing, decreasing, bathtub-shaped and upside-down bathtub. Some distributional and moment properties of the new distribution as well as its order statistics are discussed. Estimation of the parameters is illustrated using the maximum likelihood method and, finally, the model with a real data set is examined.  相似文献   

9.
In biomedical research, weighted logrank tests are frequently applied to compare two samples of randomly right censored survival times. We address the question how to combine a number of weighted logrank statistics to achieve good power of the corresponding survival test for a whole linear space or cone of alternatives, which are given by hazard rates. This leads to a new class of semiparametric projection tests that are motivated by likelihood ratio tests for an asymptotic model. We show that these tests can be carried out as permutation tests and discuss their asymptotic properties. A simulation study together with the analysis of a classical data set illustrates the advantages.  相似文献   

10.
In the accelerated hazards regression model with censored data, estimation of the covariance matrices of the regression parameters is difficult, since it involves the unknown baseline hazard function and its derivative. This paper provides simple but reliable procedures that yield asymptotically normal estimators whose covariance matrices can be easily estimated. A class of weight functions are introduced to result in the estimators whose asymptotic covariance matrices do not involve the derivative of the unknown hazard function. Based on the estimators obtained from different weight functions, some goodness-of-fit tests are constructed to check the adequacy of the accelerated hazards regression model. Numerical simulations show that the estimators and tests perform well. The procedures are illustrated in the real world example of leukemia cancer. For the leukemia cancer data, the issue of interest is a comparison of two groups of patients that had two different kinds of bone marrow transplants. It is found that the difference of the two groups are well described by a time-scale change in hazard functions, i.e., the accelerated hazards model.  相似文献   

11.
During their follow-up, patients with cancer can experience several types of recurrent events and can also die. Over the last decades, several joint models have been proposed to deal with recurrent events with dependent terminal event. Most of them require the proportional hazard assumption. In the case of long follow-up, this assumption could be violated. We propose a joint frailty model for two types of recurrent events and a dependent terminal event to account for potential dependencies between events with potentially time-varying coefficients. For that, regression splines are used to model the time-varying coefficients. Baseline hazard functions (BHF) are estimated with piecewise constant functions or with cubic M-Splines functions. The maximum likelihood estimation method provides parameter estimates. Likelihood ratio tests are performed to test the time dependency and the statistical association of the covariates. This model was driven by breast cancer data where the maximum follow-up was close to 20 years.  相似文献   

12.
Monte Carlo methods are used to examine the small-sample properties of 11 test statistics that can be used for comparing several treatments with respect to their mortality experiences while adjusting for covariables. The test statistics are investigated from three distinct models: the parametric, semiparametric and rank analysis of covariance (Quade, 1967) models. Four tests (likelihood ratio, Wald, conditional and unconditional score tests) from each of the first two models and three tests (based on rank scores) from the last model are discussed. The empirical size and power of the tests are investigated under a proportional hazards model in three situations: (1) the baseline hazard is correctly assumed to be Exponential, (2) the baseline hazard is incorrectly assumed to be Exponential, and (3) a treatment-covariate interaction is omitted from the analysis.  相似文献   

13.
Single cohort stage‐frequency data are considered when assessing the stage reached by individuals through destructive sampling. For this type of data, when all hazard rates are assumed constant and equal, Laplace transform methods have been applied in the past to estimate the parameters in each stage‐duration distribution and the overall hazard rates. If hazard rates are not all equal, estimating stage‐duration parameters using Laplace transform methods becomes complex. In this paper, two new models are proposed to estimate stage‐dependent maturation parameters using Laplace transform methods where non‐trivial hazard rates apply. The first model encompasses hazard rates that are constant within each stage but vary between stages. The second model encompasses time‐dependent hazard rates within stages. Moreover, this paper introduces a method for estimating the hazard rate in each stage for the stage‐wise constant hazard rates model. This work presents methods that could be used in specific types of laboratory studies, but the main motivation is to explore the relationships between stage maturation parameters that, in future work, could be exploited in applying Bayesian approaches. The application of the methodology in each model is evaluated using simulated data in order to illustrate the structure of these models.  相似文献   

14.
In this paper, we introduce a new probability model known as Marshall–Olkin q-Weibull distribution. Various properties of the distribution and hazard rate functions are considered. The distribution is applied to model a biostatistical data. The corresponding time series models are developed to illustrate its application in times series modeling. We also develop different types of autoregressive processes with minification structure and max–min structure which can be applied to a rich variety of contexts in real life. Sample path properties are examined and generalization to higher orders are also made. The model is applied to a time series data on daily discharge of Neyyar river in Kerala, India.  相似文献   

15.
In this article, we consider a new regression model for counting processes under a proportional hazards assumption. This model is motivated by the need of understanding the evolution of the booking process of a railway company. The main novelty of the approach consists in assuming that the baseline hazard function is piecewise constant, with unknown times of jump (these times of jump are estimated from the data as model parameters). Hence, the parameters of the model can be separated into two different types: parameters that measure the influence of the covariates, and parameters from a multiple change-point model for the baseline. Cox??s semiparametric regression can be seen as a limit case of our model. We develop an iterative procedure to estimate the different parameters, and a test procedure that allows to perform change-point detection in the baseline. Our technique is supported by simulation studies and a real data analysis, which show that our model can be a reasonable alternative to Cox??s regression model, particularly in the presence of tied event times.  相似文献   

16.
In this article, we shall attempt to introduce a new class of lifetime distributions, which enfolds several known distributions such as the generalized linear failure rate distribution and covers both positive as well as negative skewed data. This new four-parameter distribution allows for flexible hazard rate behavior. Indeed, the hazard rate function here can be increasing, decreasing, bathtub-shaped, or upside-down bathtub-shaped. We shall first study some basic distributional properties of the new model such as the cumulative distribution function, the density of the order statistics, their moments, and Rényi entropy. Estimation of the stress-strength parameter as an important reliability property is also studied. The maximum likelihood estimation procedure for complete and censored data and Bayesian method are used for estimating the parameters involved. Finally, application of the new model to three real datasets is illustrated to show the flexibility and potential of the new model compared to rival models.  相似文献   

17.
In this paper, we develop some distribution-free tests for checking the adequacy of the parametric forms of the intensity processes of a multivariate counting process model. The proposed tests, based in Khmaladze's transformations, are derived from the transforms of weighted aggregated martingale residual processes. The transformed processes converge weakly to independent Gaussian martingales under the assumed model. The distribution-free tests, such as Kolmogorov–Smirnov and Cramer–von Mises type tests, are appropriately defined to account for deviations in each of the transformed aggregated martingale residual processes. Consistency of the tests are discussed. The tests are applicable to multiplicative intensity models such as a competing risks model as well as to non-multiplicative intensity models such as a constant relative or excess mortality model. A small simulation study is conducted and an illustration to a real data example is provided.  相似文献   

18.
We introduce and study general mathematical properties of a new generator of continuous distributions with three extra parameters called the new generalized odd log-logistic family of distributions. The proposed family contains several important classes discussed in the literature as submodels such as the proportional reversed hazard rate and odd log-logistic classes. Its density function can be expressed as a mixture of exponentiated densities based on the same baseline distribution. Some of its mathematical properties including ordinary moments, quantile and generating functions, entropy measures, and order statistics, which hold for any baseline model, are presented. We also present certain characterization of the proposed distribution and derive a power series for the quantile function. We discuss the method of maximum likelihood to estimate the model parameters. We study the behavior of the maximum likelihood estimator via simulation. The importance of the new family is illustrated by means of two real data sets. These applications indicate that the new family can provide better fits than other well-known classes of distributions. The beauty and importance of the new family lies in its ability to model real data.  相似文献   

19.
We introduce a three-parameter extension of the exponential distribution which contains as sub-models the exponential, logistic-exponential and Marshall-Olkin exponential distributions. The new model is very flexible and its associated density function can be decreasing or unimodal. Further, it can produce all of the four major shapes of the hazard rate, that is, increasing, decreasing, bathtub and upside-down bathtub. Given that closed-form expressions are available for the survival and hazard rate functions, the new distribution is quite tractable. It can be used to analyze various types of observations including censored data. Computable representations of the quantile function, ordinary and incomplete moments, generating function and probability density function of order statistics are obtained. The maximum likelihood method is utilized to estimate the model parameters. A simulation study is carried out to assess the performance of the maximum likelihood estimators. Two actual data sets are used to illustrate the applicability of the proposed model.  相似文献   

20.
We propose a new procedure for combining multiple tests in samples of right-censored observations. The new method is based on multiple constrained censored empirical likelihood where the constraints are formulated as linear functionals of the cumulative hazard functions. We prove a version of Wilks’ theorem for the multiple constrained censored empirical likelihood ratio, which provides a simple reference distribution for the test statistic of our proposed method. A useful application of the proposed method is, for example, examining the survival experience of different populations by combining different weighted log-rank tests. Real data examples are given using the log-rank and Gehan-Wilcoxon tests. In a simulation study of two sample survival data, we compare the proposed method of combining tests to previously developed procedures. The results demonstrate that, in addition to its computational simplicity, the combined test performs comparably to, and in some situations more reliably than previously developed procedures. Statistical software is available in the R package ‘emplik’.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号