首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laplace approximations for the Pitman estimators of location or scale parameters, including terms O(n?1), are obtained. The resulting expressions involve the maximum-likelihood estimate and the derivatives of the log-likelihood function up to order 3. The results can be used to refine the approximations for the optimal compromise estimators for location parameters considered by Easton (1991). Some applications and Monte Carlo simulations are discussed.  相似文献   

2.
In this paper we express the sample autocorrelations for a moving average process of order q as a function of its own theoretical autocorrelations and the sample autocorrelations for the generating white noise series. Approximate analytic expressions are then obtained forthe moments of the sample autocorrelations of the moving average process.

Using these expressions, together with numerical evidence, we show that Bartlett's asymptotic formula for the variance of the sample autocorrelations of moving average processes, which is used widely in identifying these processes, is a large overestimate when considering finitesample sizes.

Our approach is for motivational purposes and so is purely formal, the amount of mathematics presented being kept to a minimum.  相似文献   

3.
Cordeiro and Andrade [Transformed generalized linear models. J Stat Plan Inference. 2009;139:2970–2987] incorporated the idea of transforming the response variable to the generalized autoregressive moving average (GARMA) model, introduced by Benjamin et al. [Generalized autoregressive moving average models. J Am Stat Assoc. 2003;98:214–223], thus developing the transformed generalized autoregressive moving average (TGARMA) model. The goal of this article is to develop the TGARMA model for symmetric continuous conditional distributions with a possible nonlinear structure for the mean that enables the fitting of a wide range of models to several time series data types. We derive an iterative process for estimating the parameters of the new model by maximum likelihood and obtain a simple formula to estimate the parameter that defines the transformation of the response variable. Furthermore, we determine the moments of the original dependent variable which generalize previous published results. We illustrate the theory by means of real data sets and evaluate the results developed through simulation studies.  相似文献   

4.
5.
In this paper, functional coefficient autoregressive (FAR) models proposed by Chen and Tsay (1993) are considered. We propose a diagnostic statistic for FAR models constructed by comparing between parametric and nonparametric estimators of the functional form of the FAR models. We show asymptotic properties of our statistic mathematically and it can be applied to the estimation of the delay parameter and the specification of the functional form of FAR models.  相似文献   

6.
A detailed simulation study is reported on the application of l1:estimations to a seasonal moving average model. It is found that the asymptotic normal distribution is a nonapproximation to the finite sample distribution. However, the expected benefits of l1:estimation relative to l2:are partially realised for nonnormal innovative distributions.  相似文献   

7.
The authors present a new convolution‐type kernel estimator of the marginal density of an MA(1) process with general error distribution. They prove the √n; ‐consistency of the nonparametric estimator and give asymptotic expressions for the mean square and the integrated mean square error of some unobservable version of the estimator. An extension to MA(q) processes is presented in the case of the mean integrated square error. Finally, a simulation study shows the good practical behaviour of the estimator and the strong connection between the estimator and its unobservable version in terms of the choice of the bandwidth.  相似文献   

8.
Consider a partially linear regression model with an unknown vector parameter β, an unknown functiong(·), and unknown heteroscedastic error variances. In this paper we develop an asymptotic semiparametric generalized least squares estimation theory under some weak moment conditions. These moment conditions are satisfied by many of the error distributions encountered in practice, and our theory does not require the number of replications to go to infinity.  相似文献   

9.
In this paper, we call attention of two observed features in practical applications of the Generalized Autoregressive Moving Average (GARMA) model due to the structure of its linear predictor. One is the multicollinearity which may lead to a non-convergence of the maximum likelihood, using iteratively reweighted least squares, and the inflation of the estimator's variance. The second is that the inclusion of the same lagged observations into the autoregressive and moving average components confounds the interpretation of the parameters. A modified model, GAR-M, is presented to reduce the multicollinearity and to improve the interpretation of the parameters. The expectation and variance under stationarity conditions are presented for the identity and logarithm link function. In a general sense, simulation studies show that the maximum likelihood estimators based on the GARMA and GAR-M models are equivalent but the GAR-M estimators presented a little lower standard errors and some restrictions in the parametric space are imposed to guarantee the stationarity of the process. Also, a real data analysis illustrates the GAR-M fit for daily hospitalization rates of elderly people due to respiratory diseases from October 2012 to April 2015 in São Paulo city, Brazil.  相似文献   

10.
In this paper we apply empirical likelihood method to the error density estimators in first-order autoregressive models under some mild conditions. The log-likelihood ratio statistic is shown to be asymptotically chi-squared distributed at a fixed point. In simulation, we show that the empirical likelihood produces confidence intervals having theoretical coverage accuracy which is better than normal approximation.  相似文献   

11.
Negative binomial regression (NBR) and Poisson regression (PR) applications have become very popular in the analysis of count data in recent years. However, if there is a high degree of relationship between the independent variables, the problem of multicollinearity arises in these models. We introduce new two-parameter estimators (TPEs) for the NBR and the PR models by unifying the two-parameter estimator (TPE) of Özkale and Kaç?ranlar [The restricted and unrestricted two-parameter estimators. Commun Stat Theory Methods. 2007;36:2707–2725]. These new estimators are general estimators which include maximum likelihood (ML) estimator, ridge estimator (RE), Liu estimator (LE) and contraction estimator (CE) as special cases. Furthermore, biasing parameters of these estimators are given and a Monte Carlo simulation is done to evaluate the performance of these estimators using mean square error (MSE) criterion. The benefits of the new TPEs are also illustrated in an empirical application. The results show that the new proposed TPEs for the NBR and the PR models are better than the ML estimator, the RE and the LE.  相似文献   

12.
In this work, we investigate an alternative bootstrap approach based on a result of Ramsey [F.L. Ramsey, Characterization of the partial autocorrelation function, Ann. Statist. 2 (1974), pp. 1296–1301] and on the Durbin–Levinson algorithm to obtain a surrogate series from linear Gaussian processes with long range dependence. We compare this bootstrap method with other existing procedures in a wide Monte Carlo experiment by estimating, parametrically and semi-parametrically, the memory parameter d. We consider Gaussian and non-Gaussian processes to prove the robustness of the method to deviations from normality. The approach is also useful to estimate confidence intervals for the memory parameter d by improving the coverage level of the interval.  相似文献   

13.
Whereas large-sample properties of the estimators of survival distributions using censored data have been studied by many authors, exact results for small samples have been difficult to obtain. In this paper we obtain the exact expression for the ath moment (a > 0) of the Bayes estimator of survival distribution using the censored data under proportional hazard model. Using the exact expression we compute the exact mean, variance and MSE of the Bayes estimator. Also two estimators ofthe mean survival time based on the Kaplan-Meier estimator and the Bayes estimator are compared for small samples under proportional hazards.  相似文献   

14.
The authors consider semiparametric efficient estimation of parameters in the conditional mean model for a simple incomplete data structure in which the outcome of interest is observed only for a random subset of subjects but covariates and surrogate (auxiliary) outcomes are observed for all. They use optimal estimating function theory to derive the semiparametric efficient score in closed form. They show that when covariates and auxiliary outcomes are discrete, a Horvitz‐Thompson type estimator with empirically estimated weights is semiparametric efficient. The authors give simulation studies validating the finite‐sample behaviour of the semiparametric efficient estimator and its asymptotic variance; they demonstrate the efficiency of the estimator in realistic settings.  相似文献   

15.
We consider nonparametric estimation of the density function and its derivatives for multivariate linear processes with long-range dependence. In a first step, the asymptotic distribution of the multivariate empirical process is derived. In a second step, the asymptotic distribution of kernel density estimators and their derivatives is obtained.  相似文献   

16.
The author considers serial correlation testing in seasonal time series models. He proposes a test statistic based on a spectral approach. Many tests of this type rely on kernel-based spectral density estimators that assign larger weights to low order lags than to high ones. Under seasonality, however, large autocorrelations may occur at seasonal lags that classical kernel estimators cannot take into account. The author thus proposes a test statistic that relies on the spectral density estimator of Shin (2004), whose weighting scheme is more adapted to this context. The distribution of his test statistic is derived under the null hypothesis and he studies its behaviour under fixed and local alternatives. He establishes the consistency of the test under a general fixed alternative. He also makes recommendations for the choice of the smoothing parameters. His simulation results suggest that his test is more powerful against seasonality than alternative procedures based on classical weighting schemes. He illustrates his procedure with monthly statistics on employment among young Americans.  相似文献   

17.
Closed form expressions for the theoretical autocovariance and autocorrelation function of mixed autoregressive moving average processes are presented. The results provide insight into the construction of autocovariances and autocorrelatians and are useful in theoretical analysis, model identification as well as in implementing maximum likelihood estimation algorithms.  相似文献   

18.
In this paper, we suggest a simple test and an easily applicable modeling procedure for threshold moving average (TMA) models. Firstly, based on the fitted residuals by maximum likelihood estimate (MLE) for MA models, we construct a simple statistic, which is obtained by linear arrange regression and follows F-distribution approximately, to test for threshold nonlinearity and specify the threshold variables. And then, we use some scatterplots to identify the number and locations of the potential thresholds. Finally, with the statistic and Akaike information criterion, we propose the procedure to build TMA models. Both the power of test statistic and the convenience of modeling procedure can work very well demonstrated by simulation experiments and the application to a real example.  相似文献   

19.
Non-iterative, distribution-free, and unbiased estimators of variance components by least squares method are derived for multivariate linear mixed model. A general inter-cluster variance matrix, a same-member only general inter-response variance matrix, and an uncorrelated intra-cluster error structure for each response are assumed. Projection method is suggested when unbiased estimators of variance components are not nonnegative definite matrices. A simulation study is conducted to investigate the properties of the proposed estimators in terms of bias and mean square error with comparison to the Gaussian (restricted) maximum likelihood estimators. The proposed estimators are illustrated by an application of gene expression familial study.  相似文献   

20.
ABSTRACT. This paper considers a general class of random coefficient regression (RCR) models to represent pooled cross-sectional and time series data. A new method is given to estimate the covariance matrix of the error component in these RCR models. Also, the asymptotic and small sample properties of the estimated generalized least squares estimator of the regression coefficient vector are established. Procedures for testing a linear restriction on the mean vector of the random coefficients are derived. Finally, a test for non-randomness in the RCR model is devised, and the asymptotic distribution of the test statistic is obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号