首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Saddlepoint approximations for the densities and the distribution functions of the ratio of two linear functions of gamma random variables and the product of gamma random variables are derived. Ratios of linear functions with positive and negative weights and non identical gamma variables are considered. The saddlepoint approximations are very accurate in the tails as in the center of the distribution. Extensive simulation studies are used to evaluate the accuracy of the proposed methods.  相似文献   

2.
We develop a saddlepoint-based method for generating small sample confidence bands for the population surviival function from the Kaplan-Meier (KM), the product limit (PL), and Abdushukurov-Cheng-Lin (ACL) survival function estimators, under the proportional hazards model. In the process we derive the exact distribution of these estimators and developed mid-ppopulation tolerance bands for said estimators. Our saddlepoint method depends upon the Mellin transform of the zero-truncated survival estimator which we derive for the KM, PL, and ACL estimators. These transforms are inverted via saddlepoint approximations to yield highly accurate approximations to the cumulative distribution functions of the respective cumulative hazard function estimators and these distribution functions are then inverted to produce our saddlepoint confidence bands. For the KM, PL and ACL estimators we compare our saddlepoint confidence bands with those obtained from competing large sample methods as well as those obtained from the exact distribution. In our simulation studies we found that the saddlepoint confidence bands are very close to the confidence bands derived from the exact distribution, while being much easier to compute, and outperform the competing large sample methods in terms of coverage probability.  相似文献   

3.
In this article we provide saddlepoint approximations for some important models of circular data. The particularity of these saddlepoint approximations is that they do not require solving the saddlepoint equation iteratively, so their evaluation is immediate. We first give very accurate approximations to P-values, critical values and power functions for some optimal tests regarding the concentration parameter under wrapped symmetric α-stable and circular normal models. Then, we consider an approximation to the distribution of a projection of the two-dimensional Pearson random walk with exponential step sizes.  相似文献   

4.
Classical saddlepoint methods, which assume that the cumulant generating function is known, result in an approximation to the distribution that achieves an error of order O(n?1). The authors give a general theorem to address the accuracy of saddlepoint approximations in which the cumulant generating function has been estimated or approximated. In practice, the resulting saddlepoint approximations are typically of the order O(n?1/2). The authors give simulation results for small sample examples to compare estimated saddlepoint approximations.  相似文献   

5.
The authors show how saddlepoint techniques lead to highly accurate approximations for Bayesian predictive densities and cumulative distribution functions in stochastic model settings where the prior is tractable, but not necessarily the likelihood or the predictand distribution. They consider more specifically models involving predictions associated with waiting times for semi‐Markov processes whose distributions are indexed by an unknown parameter θ. Bayesian prediction for such processes when they are not stationary is also addressed and the inverse‐Gaussian based saddlepoint approximation of Wood, Booth & Butler (1993) is shown to accurately deal with the nonstationarity whereas the normal‐based Lugannani & Rice (1980) approximation cannot, Their methods are illustrated by predicting various waiting times associated with M/M/q and M/G/1 queues. They also discuss modifications to the matrix renewal theory needed for computing the moment generating functions that are used in the saddlepoint methods.  相似文献   

6.
One of the common used classes of distributions is the stopped-sum class. This class includes Hermite distribution, Polya–Aeppli distribution, Poisson-Gamma distribution, and Neyman type A. This article introduces the saddlepoint approximations to the stopped-sum class in continuous and discrete settings. We discuss approximations for mass/density and cumulative distribution functions of stopped-sum distributions. Examples of continuous and discrete distributions from the Poisson stopped-sum class are presented. Comparisons between saddlepoint approximations and the exact calculations show the great accuracy of the saddlepoint methods.  相似文献   

7.
In many situations saddlepoint approximations can replace the Monte Carlo simulation typically used to find the bootstrap distribution of a statistic. We explain how bootstrap and permutation distributions can be expressed as conditional distributions and how methods for linear programming and for fitting generalized linear models can be used to find saddlepoint approximations to these distributions. The ideas are illustrated using an example from insurance.  相似文献   

8.
The Kaplan–Meier (KM) estimator is ubiquitously used for estimating survival functions, but it provides only a discrete approximation at the observation times and does not deliver a proper distribution if the largest observation is censored. Using KM as a starting point, we devise an empirical saddlepoint approximation‐based method for producing a smooth survival function that is unencumbered by choice of tuning parameters. The procedure inverts the moment generating function (MGF) defined through a Riemann–Stieltjes integral with respect to an underlying mixed probability measure consisting of the discrete KM mass function weights and an absolutely continuous exponential right‐tail completion. Uniform consistency, and weak and strong convergence results are established for the resulting MGF and its derivatives, thus validating their usage as inputs into the saddlepoint routines. Relevant asymptotic results are also derived for the density and distribution function estimates. The performance of the resulting survival approximations is examined in simulation studies, which demonstrate a favourable comparison with the log spline method (Kooperberg & Stone, 1992) in small sample settings. For smoothing survival functions we argue that the methodology has no immediate competitors in its class, and we illustrate its application on several real data sets. The Canadian Journal of Statistics 47: 238–261; 2019 © 2019 Statistical Society of Canada  相似文献   

9.
For a sample from a given distribution the difference of two order statistics and the Studentized quantile are statistics whose distribution is needed to obtain tests and confidence intervals for quantiles and quantile differences. This paper gives saddlepoint approximations for densities and saddlepoint approximations of the Lugannani–Rice form for tail probabilities of these statistics. The relative errors of the approximations are n −1 uniformly in a neighbourhood of the parameters and this uniformity is global if the densities are log-concave.  相似文献   

10.
ABSTRACT

We develop the saddlepoint approximations in obtaining the transition functions for general subordinator processes. We derive explicit expressions of the first- and second-order approximations. Specifically, we consider some particular classes of subordinators including the Poisson processes, the Gamma processes, the α-stable subordinators, and the Poisson random integrals. We test this technique on the Poisson and Gamma processes, which have closed-form transition functions. Outcomes show that the approximate expressions are consistent with the true transition functions. We then use this method to predict transition density functions for the α-stable subordinator processes. Finally, we calculate approximated transition densities for some Poisson random integrations. Numerical analysis shows the perfect ability of the saddlepoint approximations to predict the transition densities of the α-stable processes and the Poisson random integrations.  相似文献   

11.
The saddlepoint approximation formulas provide versatile tools for analytic approximation of the tail expectation of a random variable by approximating the complex Laplace integral of the tail expectation expressed in terms of the cumulant generating function of the random variable. We generalize the saddlepoint approximation formulas for calculating tail expectations from the usual Gaussian base distribution to an arbitrary base distribution. Specific discussion is presented on the criteria of choosing the base distribution that fits better the underlying distribution. Numerical performance and comparison of accuracy are made among different saddlepoint approximation formulas. Improved accuracy of the saddlepoint approximations to tail expectations is revealed when proper base distributions are chosen. We also demonstrate enhanced accuracy of the generalized saddlepoint approximation formulas under non-Gaussian base distributions in pricing European options on continuous integrated variance under the Heston stochastic volatility model.  相似文献   

12.
This paper provides a saddlepoint approximation to the distribution of the sample version of Kendall's τ, which is a measure of association between two samples. The saddlepoint approximation is compared with the Edgeworth and the normal approximations, and with the bootstrap resampling distribution. A numerical study shows that with small sample sizes the saddlepoint approximation outperforms both the normal and the Edgeworth approximations. This paper gives also an analytical comparison between approximated and exact cumulants of the sample Kendall's τ when the two samples are independent.  相似文献   

13.
The paper gives the saddlepoint approximation for the distribution function of the sample quantile. A comparison of the saddlepoint approximations for the distribution functions of the sample quantile and the bootstrap quantile shows that the error of the bootstrap approximation to the distribution of the sample quantile obtained by Singh (1981) as an absolute error is actually a relative error.  相似文献   

14.
A class of bivariate symmetry tests for complete data and competing risks data is considered. Saddlepoint approximation for the exact p-values of the underlying permutation distribution of these tests is derived. Several simulation studies are conducted to evaluate the performance of the saddlepoint approximation and the asymptotic approximation. The saddlepoint approximation was found to be highly accurate and superior to the asymptotic approximations in replicating the exact permutation significance.  相似文献   

15.
Four new approximations t o the exact distribution of the two-stage l e a s t squares estimator of astructuralcoefficient for

the case of two included endogeneous variables are introduced and compared with the others in the literatur e . Two of the new approximations are based on the Pearson distribution and are found to be adequate throughout the parameter space. A normal approximation using exact moments and an approximation based on the saddlepoint method (Holly and Phillips,1979) are found to be

poor for a wide range of parameter values.  相似文献   

16.
In this paper a measure of proximity of distributions, when moments are known, is proposed. Based on cases where the exact distribution is known, evidence is given that the proposed measure is accurate to evaluate the proximity of quantiles (exact vs. approximated). The measure may be applied to compare asymptotic and near-exact approximations to distributions, in situations where although being known the exact moments, the exact distribution is not known or the expression for its probability density function is not known or too complicated to handle. In this paper the measure is applied to compare newly proposed asymptotic and near-exact approximations to the distribution of the Wilks Lambda statistic when both groups of variables have an odd number of variables. This measure is also applied to the study of several cases of telescopic near-exact approximations to the exact distribution of the Wilks Lambda statistic based on mixtures of generalized near-integer gamma distributions.  相似文献   

17.
When we are given only a transform such as the moment-generating function of a distribution, it is rare that we can efficiently simulate random variables. Possible approaches such as the inverse transform using numerical inversion of the transform are computationally very expensive. However, the saddlepoint approximation is known to be exact for the Normal, Gamma, and inverse Gaussian distribution and remarkably accurate for a large number of others. We explore the efficient use of the saddlepoint approximation for simulating distributions and provide three examples of the accuracy of these simulations.  相似文献   

18.
A class of ratios of partial sums, including Normal, Weibull, Gamma, and Exponential distributions, is considered. The distribution of a linear combination of ratios of partial sums from this class is characterized by the distribution of a linear combination of Dirichlet components. This article presents two saddlepoint approaches to calculate the density and the distribution function for such a class of linear combinations. A simulation study is conducted to assess the performance of the saddlepoint methods and shows the great accuracy of the approximations over the usual asymptotic approximation. Applications of the presented approximations in statistical inferences are discussed.  相似文献   

19.
In this paper three near-exact distributions are developed for the sphericity test statistic. The exact probability density function of this statistic is usually represented through the use of the Meijer G function, which renders the computation of quantiles impossible even for a moderately large number of variables. The main purpose of this paper is to obtain near-exact distributions that lie closer to the exact distribution than the asymptotic distributions while, at the same time, correspond to density and cumulative distribution functions practical to use, allowing for an easy determination of quantiles. In addition to this, two asymptotic distributions that lie closer to the exact distribution than the existing ones were developed. Two measures are considered to evaluate the proximity between the exact and the asymptotic and near-exact distributions developed. As a reference we use the saddlepoint approximations developed by Butler et al. [1993. Saddlepoint approximations for tests of block independence, sphericity and equal variances and covariances. J. Roy. Statist. Soc., Ser. B 55, 171–183] as well as the asymptotic distribution proposed by Box.  相似文献   

20.
Simple, closed form saddlepoint approximations for the distribution and density of the singly and doubly noncentral F distributions are presented. Their overwhelming accuracy is demonstrated numerically using a variety of parameter values. The approximations are shown to be uniform in the right tail and the associated limitating relative error is derived. Difficulties associated with some algorithms used for exact computation of the singly noncentral F are noted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号