首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Skew normal distribution is an alternative distribution to the normal distribution to accommodate asymmetry. Since then extensive studies have been done on applying Azzalini’s skewness mechanism to other well-known distributions, such as skew-t distribution, which is more flexible and can better accommodate long tailed data than the skew normal one. The Kumaraswamy generalized distribution (Kw ? F) is another new class of distribution which is capable of fitting skewed data that can not be fitted well by existing distributions. Such a distribution has been widely studied and various versions of generalization of this distribution family have been introduced. In this article, we introduce a new generalization of the skew-t distribution based on the Kumaraswamy generalized distribution. The new class of distribution, which we call the Kumaraswamy skew-t (KwST) has the ability of fitting skewed, long, and heavy-tailed data and is more flexible than the skew-t distribution as it contains the skew-t distribution as a special case. Related properties of this distribution family such as mathematical properties, moments, and order statistics are discussed. The proposed distribution is applied to a real dataset to illustrate the estimation procedure.  相似文献   

2.
On some study of skew-t distributions   总被引:1,自引:0,他引:1  
Abstract

In this note, through ratio of independent random variables, new families of univariate and bivariate skew-t distributions are introduced. Probability density function for each skew-t distribution will be given. We also derive explicit forms of moments of the univariate skew-t distribution and recurrence relations for its cumulative distribution function. Finally we illustrate the flexibility of this class of distributions with applications to a simulated data and the volcanos heights data.  相似文献   

3.
In this article we introduce a new generalization of skew-t distributions, which contains the standard skew-t distribution, as a special case. This new class of distributions is an adequate model for modeling some dataset rather than the standard skew-t distributions. This kind of distributions can be represented as a scale-shape mixture of the extended skew-normal distributions. The main properties of this family of distributions are studied and a recurrence relation for the cumulative distribution functions (cdf) of them is presented. We derive the distribution of the order statistics from the trivariate exchangeable t-distribution in terms of our distribution and then an exact expression for the cdf of order statistics is derived. Likelihood inference for this distribution is also examined. The method is illustrated with a numerical example via a simulation study.  相似文献   

4.
The multivariate Student-t copula family is used in statistical finance and other areas when there is tail dependence in the data. It often is a good-fitting copula but can be improved on when there is tail asymmetry. Multivariate skew-t copula families can be considered when there is tail dependence and tail asymmetry, and we show how a fast numerical implementation for maximum likelihood estimation is possible. For the copula implicit in a multivariate skew-t distribution, the fast implementation makes use of (i) monotone interpolation of the univariate marginal quantile function and (ii) a re-parametrization of the correlation matrix. Our numerical approach is tested with simulated data with data-driven parameters. A real data example involves the daily returns of three stock indices: the Nikkei225, S&P500 and DAX. With both unfiltered returns and GARCH/EGARCH filtered returns, we compare the fits of the Azzalini–Capitanio skew-t, generalized hyperbolic skew-t, Student-t, skew-Normal and Normal copulas.  相似文献   

5.
We consider here a generalization of the skew-normal distribution, GSN(λ1,λ2,ρ), defined through a standard bivariate normal distribution with correlation ρ, which is a special case of the unified multivariate skew-normal distribution studied recently by Arellano-Valle and Azzalini [2006. On the unification of families of skew-normal distributions. Scand. J. Statist. 33, 561–574]. We then present some simple and useful properties of this distribution and also derive its moment generating function in an explicit form. Next, we show that distributions of order statistics from the trivariate normal distribution are mixtures of these generalized skew-normal distributions; thence, using the established properties of the generalized skew-normal distribution, we derive the moment generating functions of order statistics, and also present expressions for means and variances of these order statistics.Next, we introduce a generalized skew-tν distribution, which is a special case of the unified multivariate skew-elliptical distribution presented by Arellano-Valle and Azzalini [2006. On the unification of families of skew-normal distributions. Scand. J. Statist. 33, 561–574] and is in fact a three-parameter generalization of Azzalini and Capitanio's [2003. Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t distribution. J. Roy. Statist. Soc. Ser. B 65, 367–389] univariate skew-tν form. We then use the relationship between the generalized skew-normal and skew-tν distributions to discuss some properties of generalized skew-tν as well as distributions of order statistics from bivariate and trivariate tν distributions. We show that these distributions of order statistics are indeed mixtures of generalized skew-tν distributions, and then use this property to derive explicit expressions for means and variances of these order statistics.  相似文献   

6.
In this paper, we study inference in a heteroscedastic measurement error model with known error variances. Instead of the normal distribution for the random components, we develop a model that assumes a skew-t distribution for the true covariate and a centred Student's t distribution for the error terms. The proposed model enables to accommodate skewness and heavy-tailedness in the data, while the degrees of freedom of the distributions can be different. Maximum likelihood estimates are computed via an EM-type algorithm. The behaviour of the estimators is also assessed in a simulation study. Finally, the approach is illustrated with a real data set from a methods comparison study in Analytical Chemistry.  相似文献   

7.
This article proposes a class of multivariate bilateral selection t distributions useful for analyzing non-normal (skewed and/or bimodal) multivariate data. The class is associated with a bilateral selection mechanism, and it is obtained from a marginal distribution of the centrally truncated multivariate t. It is flexible enough to include the multivariate t and multivariate skew-t distributions and mathematically tractable enough to account for central truncation of a hidden t variable. The class, closed under linear transformation, marginal, and conditional operations, is studied from several aspects such as shape of the probability density function, conditioning of a distribution, scale mixtures of multivariate normal, and a probabilistic representation. The relationships among these aspects are given, and various properties of the class are also discussed. Necessary theories and two applications are provided.  相似文献   

8.
Linear mixed models were developed to handle clustered data and have been a topic of increasing interest in statistics for the past 50 years. Generally, the normality (or symmetry) of the random effects is a common assumption in linear mixed models but it may, sometimes, be unrealistic, obscuring important features of among-subjects variation. In this article, we utilize skew-normal/independent distributions as a tool for robust modeling of linear mixed models under a Bayesian paradigm. The skew-normal/independent distributions is an attractive class of asymmetric heavy-tailed distributions that includes the skew-normal distribution, skew-t, skew-slash and the skew-contaminated normal distributions as special cases, providing an appealing robust alternative to the routine use of symmetric distributions in this type of models. The methods developed are illustrated using a real data set from Framingham cholesterol study.  相似文献   

9.
Variable selection is an important issue in all regression analysis, and in this article, we investigate the simultaneous variable selection in joint location and scale models of the skew-t-normal distribution when the dataset under consideration involves heavy tail and asymmetric outcomes. We propose a unified penalized likelihood method which can simultaneously select significant variables in the location and scale models. Furthermore, the proposed variable selection method can simultaneously perform parameter estimation and variable selection in the location and scale models. With appropriate selection of the tuning parameters, we establish the consistency and the oracle property of the regularized estimators. These estimators are compared by simulation studies.  相似文献   

10.
Linear mixed models based on the normality assumption are widely used in health related studies. Although the normality assumption leads to simple, mathematically tractable, and powerful tests, violation of the assumption may easily invalidate the statistical inference. Transformation of variables is sometimes used to make normality approximately true. In this paper we consider another approach by replacing the normal distributions in linear mixed models by skew-t distributions, which account for skewness and heavy tails for both the random effects and the errors. The full likelihood-based estimator is often difficult to use, but a 3-step estimation procedure is proposed, followed by an application to the analysis of deglutition apnea duration in normal swallows. The example shows that skew-t models often entail more reliable inference than Gaussian models for the skewed data.  相似文献   

11.
After initiation of treatment, HIV viral load has multiphasic changes, which indicates that the viral decay rate is a time-varying process. Mixed-effects models with different time-varying decay rate functions have been proposed in literature. However, there are two unresolved critical issues: (i) it is not clear which model is more appropriate for practical use, and (ii) the model random errors are commonly assumed to follow a normal distribution, which may be unrealistic and can obscure important features of within- and among-subject variations. Because asymmetry of HIV viral load data is still noticeable even after transformation, it is important to use a more general distribution family that enables the unrealistic normal assumption to be relaxed. We developed skew-elliptical (SE) Bayesian mixed-effects models by considering the model random errors to have an SE distribution. We compared the performance among five SE models that have different time-varying decay rate functions. For each model, we also contrasted the performance under different model random error assumptions such as normal, Student-t, skew-normal, or skew-t distribution. Two AIDS clinical trial datasets were used to illustrate the proposed models and methods. The results indicate that the model with a time-varying viral decay rate that has two exponential components is preferred. Among the four distribution assumptions, the skew-t and skew-normal models provided better fitting to the data than normal or Student-t model, suggesting that it is important to assume a model with a skewed distribution in order to achieve reasonable results when the data exhibit skewness.  相似文献   

12.
Biased sampling from an underlying distribution with p.d.f. f(t), t>0, implies that observations follow the weighted distribution with p.d.f. f w (t)=w(t)f(t)/E[w(T)] for a known weight function w. In particular, the function w(t)=t α has important applications, including length-biased sampling (α=1) and area-biased sampling (α=2). We first consider here the maximum likelihood estimation of the parameters of a distribution f(t) under biased sampling from a censored population in a proportional hazards frailty model where a baseline distribution (e.g. Weibull) is mixed with a continuous frailty distribution (e.g. Gamma). A right-censored observation contributes a term proportional to w(t)S(t) to the likelihood; this is not the same as S w (t), so the problem of fitting the model does not simply reduce to fitting the weighted distribution. We present results on the distribution of frailty in the weighted distribution and develop an EM algorithm for estimating the parameters of the model in the important Weibull–Gamma case. We also give results for the case where f(t) is a finite mixture distribution. Results are presented for uncensored data and for Type I right censoring. Simulation results are presented, and the methods are illustrated on a set of lifetime data.  相似文献   

13.
This paper presents a novel framework for maximum likelihood (ML) estimation in skew-t factor analysis (STFA) models in the presence of missing values or nonresponses. As a robust extension of the ordinary factor analysis model, the STFA model assumes a restricted version of the multivariate skew-t distribution for the latent factors and the unobservable errors to accommodate non-normal features such as asymmetry and heavy tails or outliers. An EM-type algorithm is developed to carry out ML estimation and imputation of missing values under a missing at random mechanism. The practical utility of the proposed methodology is illustrated through real and synthetic data examples.  相似文献   

14.
Cluster analysis is the automated search for groups of homogeneous observations in a data set. A popular modeling approach for clustering is based on finite normal mixture models, which assume that each cluster is modeled as a multivariate normal distribution. However, the normality assumption that each component is symmetric is often unrealistic. Furthermore, normal mixture models are not robust against outliers; they often require extra components for modeling outliers and/or give a poor representation of the data. To address these issues, we propose a new class of distributions, multivariate t distributions with the Box-Cox transformation, for mixture modeling. This class of distributions generalizes the normal distribution with the more heavy-tailed t distribution, and introduces skewness via the Box-Cox transformation. As a result, this provides a unified framework to simultaneously handle outlier identification and data transformation, two interrelated issues. We describe an Expectation-Maximization algorithm for parameter estimation along with transformation selection. We demonstrate the proposed methodology with three real data sets and simulation studies. Compared with a wealth of approaches including the skew-t mixture model, the proposed t mixture model with the Box-Cox transformation performs favorably in terms of accuracy in the assignment of observations, robustness against model misspecification, and selection of the number of components.  相似文献   

15.
Linear mixed models are widely used when multiple correlated measurements are made on each unit of interest. In many applications, the units may form several distinct clusters, and such heterogeneity can be more appropriately modelled by a finite mixture linear mixed model. The classical estimation approach, in which both the random effects and the error parts are assumed to follow normal distribution, is sensitive to outliers, and failure to accommodate outliers may greatly jeopardize the model estimation and inference. We propose a new mixture linear mixed model using multivariate t distribution. For each mixture component, we assume the response and the random effects jointly follow a multivariate t distribution, to conveniently robustify the estimation procedure. An efficient expectation conditional maximization algorithm is developed for conducting maximum likelihood estimation. The degrees of freedom parameters of the t distributions are chosen data adaptively, for achieving flexible trade-off between estimation robustness and efficiency. Simulation studies and an application on analysing lung growth longitudinal data showcase the efficacy of the proposed approach.  相似文献   

16.
This paper presents a robust probabilistic mixture model based on the multivariate skew-t-normal distribution, a skew extension of the multivariate Student’s t distribution with more powerful abilities in modelling data whose distribution seriously deviates from normality. The proposed model includes mixtures of normal, t and skew-normal distributions as special cases and provides a flexible alternative to recently proposed skew t mixtures. We develop two analytically tractable EM-type algorithms for computing maximum likelihood estimates of model parameters in which the skewness parameters and degrees of freedom are asymptotically uncorrelated. Standard errors for the parameter estimates can be obtained via a general information-based method. We also present a procedure of merging mixture components to automatically identify the number of clusters by fitting piecewise linear regression to the rescaled entropy plot. The effectiveness and performance of the proposed methodology are illustrated by two real-life examples.  相似文献   

17.
Skew-normal/independent distributions are a class of asymmetric thick-tailed distributions that include the skew-normal distribution as a special case. In this paper, we explore the use of Markov Chain Monte Carlo (MCMC) methods to develop a Bayesian analysis in multivariate measurement errors models. We propose the use of skew-normal/independent distributions to model the unobserved value of the covariates (latent variable) and symmetric normal/independent distributions for the random errors term, providing an appealing robust alternative to the usual symmetric process in multivariate measurement errors models. Among the distributions that belong to this class of distributions, we examine univariate and multivariate versions of the skew-normal, skew-t, skew-slash and skew-contaminated normal distributions. The results and methods are applied to a real data set.  相似文献   

18.
In this study, we introduce the Heine process, {Xq(t), t > 0}, 0 < q < 1, where the random variable Xq(t), for every t > 0, represents the number of events (occurrences or arrivals) during a time interval (0, t]. The Heine process is introduced as a q-analog of the basic Poisson process. Also, in this study, we prove that the distribution of the waiting time Wν, q, ν ? 1, up to the νth arrival, is a q-Erlang distribution and the interarrival times Tk, q = Wk, q ? Wk ? 1, q,?k = 1, 2, …, ν with W0, q = 0 are independent and equidistributed with a q-Exponential distribution.  相似文献   

19.
The skew-normal and the skew-t distributions are parametric families which are currently under intense investigation since they provide a more flexible formulation compared to the classical normal and t distributions by introducing a parameter which regulates their skewness. While these families enjoy attractive formal properties from the probability viewpoint, a practical problem with their usage in applications is the possibility that the maximum likelihood estimate of the parameter which regulates skewness diverges. This situation has vanishing probability for increasing sample size, but for finite samples it occurs with non-negligible probability, and its occurrence has unpleasant effects on the inferential process. Methods for overcoming this problem have been put forward both in the classical and in the Bayesian formulation, but their applicability is restricted to simple situations. We formulate a proposal based on the idea of penalized likelihood, which has connections with some of the existing methods, but it applies more generally, including the multivariate case.  相似文献   

20.
In this paper, we obtain a new approximation of the Student's t distribution by using the symmetric generalized logistic (SGL) distribution function. The error of this approximation is shown to be 0(1/n2 )where nis the degrees of freedom of thetdistribution. In comparison to similar approximations by George and Ojo and George et al. (1986), this new approximation is much simpler and more accurate. It is also shown that under some conditions, the tdistribution is a good approximation of the SGL distribution. Therefore, the complicated expressions for the cumulants and moments of the SGL can be approximated by those of the t, distribution. Finally, numerical results are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号