首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study presents a control chart for monitoring shifts in the covariance matrix of a multivariate normally distributed process. This chart combines the double sampling, variable sample size and variable sampling interval features, and is called the DSVSSI |S| chart. A Markov chain approach is developed to design the DSVSSI |S| chart, by minimizing the average time to signal (ATS), for a specified shift size in the covariance matrix. The DSVSSI |S| chart has a better ATS performance compared to other existing charts. An example is given to illustrate the operation of the DSVSSI |S| chart.  相似文献   

2.
This paper develops the algorithm for the optimization designs of the adaptive T2 Control Chart for Monitoring the Mean Vector of a Multivariate Normal Process. It includes the variable sample size, variable sampling interval and variable dimensional chart. The VDT2 control chart performs well for moderate and large shifts in the mean vector. However, its performance for small shifts is poor. To improve the chart's performance in detecting such shifts, we propose the application of the variable sample size and sampling interval technique to the VDT2 control chart, resulting in the VSSIVDT2 control chart.  相似文献   

3.
This article proposes a CV chart by using the variable sample size and sampling interval (VSSI) feature to improve the performance of the basic CV chart, for detecting small and moderate shifts in the CV. The proposed VSSI CV chart is designed by allowing the sample size and the sampling interval to vary. The VSSI CV chart's statistical performance is measured by using the average time to signal (ATS) and expected average time to signal (EATS) criteria and is compared with that of existing CV charts. The Markov chain approach is employed in the design of the chart.  相似文献   

4.
Although the classical Shewhart np control chart has been widely used to detect an out-of-control status of manufacturing process, it is static and there is lack of responsiveness to slight process changes. In this paper, an adaptive np control chart with a joint sampling strategy combining double sampling (DS) and variable sampling interval (VSI) is developed. The multiple dependent state sampling scheme is adopted to further improve the performance of the control chart. An economical design model to minimize the general cost of using the proposed chart is established and solved by a genetic algorithm. The numerical results show that comparing to traditional static np control chart, the proposed np chart yields better performance in terms of shorter time to signal an out-of-control process and less expected cost per unit of time. Comparisons are made to show the capability of the proposed chart in yielding average reductions of 5.01% and 8.89%, in the cost of the proposed model compared to situations in which either the DSVSI np chart or the traditional np chart is used.  相似文献   

5.
This study proposes a double sampling (DS) Max chart for monitoring shifts in the process mean and standard deviation. The design of the DS Max chart depends on five parameters, i.e. first and second sample sizes, warning limit at Stage 1, upper control limits at Stages 1 and 2. The optimization design of the DS Max chart is conducted using a genetic algorithm by minimizing the average run length. The comparison shows that the DS Max chart performs better than the existing charts in the literature. An example is provided to illustrate the application of the DS Max chart.  相似文献   

6.
7.
This study proposes a synthetic double sampling s chart that integrates the double sampling (DS) s chart and the conforming run length chart. An optimization procedure is proposed to compute the optimal parameters of the synthetic DS s chart. The performance of the synthetic DS s chart is compared with other existing control charts for monitoring process standard deviation. The results show that the synthetic DS s chart is more effective for detecting increases in the process standard deviation for a wide range of shifts. An example is provided to illustrate the operation procedure of the synthetic DS s chart.  相似文献   

8.
Control charts are statistical tools to monitor a process or a product. However, some processes cannot be controlled by monitoring a characteristic; instead, they need to be monitored using profiles. Economic-statistical design of profile monitoring means determining the parameters of a profile monitoring scheme such that total costs are minimized while statistical measures maintain proper values. While varying sampling interval usually increases the effectiveness of profile monitoring, economic-statistical design of variable sampling interval (VSI) profile monitoring is investigated in this paper. An extended Lorenzen–Vance function is used for modeling total costs in VSI model where the average time to signal is employed for depicting the statistical measure of the obtained profile monitoring scheme. Two sampling intervals; number of set points and the parameters of control charts that are used in profile monitoring are the variables that are obtained thorough the economic-statistical model. A genetic algorithm is employed to optimize the model and an experimental design approach is used for tuning its parameters. Sensitivity analysis and numerical results indicate satisfactory performance for the proposed model.  相似文献   

9.
Abstract

An economic-statistical design of the synthetic double sampling (synDS) T2 chart is presented in this study. The cost function is minimized to obtain the optimal design parameters of the synDS T2 chart by incorporating the statistical constraints or the constraints on the average number of samples. An example is provided and a sensitivity analysis is conducted to study the effect of model parameters on the optimal solution of the design. The numerical comparison shows that the synDS T2 chart performs better than the synthetic T2 chart and the multivariate exponentially weighted moving average chart, in terms of the cost.  相似文献   

10.
11.
The adaptive multivariate CUSUM (AMCUSUM) chart has received considerable attention because of its superior sensitivity against a range of mean shift sizes than that of the conventional non-adaptive multivariate CUSUM (MCUSUM) chart. Recently, weighted AMCUSUM (WAMCUSUM) charts with a fixed sampling interval (FSI) have been proposed, called the WAMCUSUM-FSI charts, which provide more sensitivity than the AMCUSUM-FSI charts. In this paper, we extend this work and propose WAMCUSUM charts with variable sampling interval (VSI), named the WAMCUSUM-VSI charts, for efficiently monitoring the mean of a multivariate normally distributed process. The Monte Carlo simulation method is used to compute the average time to signal (ATS) and the adjusted ATS (AATS) profiles of the existing and proposed charts. It is found that the WAMCUSUM-VSI charts perform substantially and nearly uniformly better than the WAMCUSUM-FSI charts in terms of the ATS and AATS performance criterion. An example is given to explain the implementation of the WAMCUSUM charts with fixed and VSIs.  相似文献   

12.
13.
In this paper, we propose new estimation techniques in connection with the system of S-distributions. Besides “exact” maximum likelihood (ML), we propose simulated ML and a characteristic function-based procedure. The “exact” and simulated likelihoods can be used to provide numerical, MCMC-based Bayesian inferences.  相似文献   

14.
A single chart, instead of X-bar and R charts or X-bar and S charts, to monitor simultaneously the process mean and the variability if found would cut down the time and effort. Some researches have been done in finding such charts. In reality, process target is more important than process mean. A much easier average loss chart is first proposed here to detect the increases in the difference of the process mean and the target and the variability simultaneously. An example of the customer complaint processing time of the customer service center of an IT company shows the application and the performance of the proposed average loss control chart. Furthermore, a more efficient optimal average loss chart with variable sampling intervals is proposed and performs better than the average loss chart with fixed sampling intervals and the Shewhart joint X-bar and S charts. Some numerical analyses demonstrated the findings.  相似文献   

15.
16.
This paper proposes useful exact bounds for the parameters of the double sampling S2 chart with known process variance and it also investigates the properties of the double sampling S2 chart with estimated process variance, in terms of the average run length, the standard deviation of the run length and the average sample size, providing a numerical comparison with the known process variance case. It also provides guidelines to systematically design the double sampling S2 chart both with known and estimated process variance and proposes two optimal design procedures with estimated process variance, for (a) minimizing the out-of-control average run length and (b) minimizing the out-of-control average sample size.  相似文献   

17.
Recently, three-level control chart has been developed for monitoring situations in which an appropriate quality measure uses three discrete levels to classify a product characteristic. In this paper, the variable parameters control charts for multinomial data are developed with a three-level classification scheme. We compare it with various adaptive charts to show that this modified scheme can improve the performance. In order to evaluate and compare the performance of this scheme, adjusted average time to signal is used as the performance measure. Results indicate that the proposed chart has improved performance and is relatively sensitive to small shifts.  相似文献   

18.
19.
Gadre and Rattihalli [Gadre, M.P. and Rattihalli, R.N., 2005a, A unit and group runs based chart to identify increases in fraction nonconforming. Journal of Quality Technology, 37, 199–209.] proposed a control chart called the unit and group runs (UGR) control chart to identify increases in fraction non-conforming. In this article, the concept of UGR chart is extended to the multi-attribute case to detect the process deterioration. It is illustrated that in multi-attribute cases also, the UGR chart gives a remarkable reduction in out-of-control average time to signal when compared with the multi-attribute np chart, the multi-attribute synthetic chart and the multi-attribute group runs chart recently developed by Gadre and Rattihalli [Gadre, M.P. and Rattihalli, R.N., 2005b, Some group inspection based multi-attribute control charts. Economic Quality Control, 20, 191–204.]. The steady state performance of the multi-attribute UGR chart is also excellent. The procedure of identifying the attributes causing signal is also described and illustrated.  相似文献   

20.
Statistical quality control charts have been widely accepted as a potentially powerful process monitoring tool because of their excellent speed in tracking shifts in the underlying process parameter(s). In recent studies, auxiliary-information-based (AIB) control charts have shown superior run length performances than those constructed without using it. In this paper, a new double sampling (DS) control chart is constructed whose plotting-statistics requires information on the study variable and on any correlated auxiliary variable for efficiently monitoring the process mean, namely AIB DS chart. The AIB DS chart also encompasses the classical DS chart. We discuss in detail the construction, optimal design, run length profiles, and the performance evaluations of the proposed chart. It turns out that the AIB DS chart performs uniformly better than the DS chart when detecting different kinds of shifts in the process mean. It is also more sensitive than the classical synthetic and AIB synthetic charts when detecting a particular shift in the process mean. Moreover, with some realistic beliefs, the proposed chart outperforms the exponentially weighted moving average chart. An illustrative example is also presented to explain the working and implementation of the proposed chart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号