首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selection of the “best” t out of k populations has been considered in the indifferece zone formulation by Bachhofer (1954) and in the subset selection formulation by Carroll, Gupta and Huang (1975). The latter approach is used here to obtain conservative solutions for the goals of selecting (i) all the “good” or (ii) only “good” populations, where “good” means having a location parameter among the largest t. For the case of normal distributions, with common unknown variance, tables are produced for implementing these procedures. Also, for this case, simulation results suggest that the procedure may not be too conservative.  相似文献   

2.
Consider k independent observations Yi (i= 1,., k) from two-parameter exponential populations i with location parameters μ and the same scale parameter If the μi are ranked as consider population as the “worst” population and IIp(k) as the “best” population (with some tagging so that p{) and p(k) are well defined in the case of equalities). If the Yi are ranked as we consider the procedure, “Select provided YR(k) Yr(k) is sufficiently large so that is demonstrably better than the other populations.” A similar procedure is studied for selecting the “demonstrably worst” population.  相似文献   

3.
Let be k independent populations having the same known quantile of order p (0 p 1) and let F(x)=F(x/i) be the absolutely continuous cumulative distribution function of the ith population indexed by the scale parameter 1, i = 1,…, k. We propose subset selection procedures based on two-sample U-statistics for selecting a subset of k populations containing the one associated with the smallest scale parameter. These procedures are compared with the subset selection procedures based on two-sample linear rank statistics given by Gill & Mehta (1989) in the sense of Pitman asymptotic relative efficiency, with interesting results.  相似文献   

4.
Consider k( ? 2) normal populations with unknown means μ1, …, μk, and a common known variance σ2. Let μ[1] ? ??? ? μ[k] denote the ordered μi.The populations associated with the t(1 ? t ? k ? 1) largest means are called the t best populations. Hsu and Panchapakesan (2004) proposed and investigated a procedure RHPfor selecting a non empty subset of the k populations whose size is at most m(1 ? m ? k ? t) so that at least one of the t best populations is included in the selected subset with a minimum guaranteed probability P* whenever μ[k ? t + 1] ? μ[k ? t] ? δ*, where P*?and?δ* are specified in advance of the experiment. This probability requirement is known as the indifference-zone probability requirement. In the present article, we investigate the same procedure RHP for the same goal as before but when k ? t < m ? k ? 1 so that at least one of the t best populations is included in the selected subset with a minimum guaranteed probability P* whatever be the configuration of the unknown μi. The probability requirement in this latter case is termed the subset selection probability requirement. Santner (1976) proposed and investigated a different procedure (RS) based on samples of size n from each of the populations, considering both cases, 1 ? m ? k ? t and k ? t < m ? k. The special case of t = 1 was earlier studied by Gupta and Santner (1973) and Hsu and Panchapakesan (2002) for their respective procedures.  相似文献   

5.
In the problem of selecting the best of k populations, Olkin, Sobel, and Tong (1976) have introduced the idea of estimating the probability of correct selection. In an attempt to improve on their estimator we consider anempirical Bayes approach. We compare the two estimators via analytic results and a simulation study.  相似文献   

6.
Given k( ? 3) independent normal populations with unknown means and unknown and unequal variances, a single-stage sampling procedure to select the best t out of k populations is proposed and the procedure is completely independent of the unknown means and the unknown variances. For various combinations of k and probability requirement, tables of procedure parameters are provided for practitioners.  相似文献   

7.
Suppose a subset of populations is selected from k exponential populations with unknown location parameters θ1, θ2, …, θk and common known scale parameter σ. We consider the estimation of the location parameter of the selected population and the average worth of the selected subset under an asymmetric LINEX loss function. We show that the natural estimator of these parameters is biased and find the uniformly minimum risk-unbiased (UMRU) estimator of these parameters. In the case of k = 2, we find the minimax estimator of the location parameter of the smallest selected population. Furthermore, we compare numerically the risk of UMRU, minimax, and the natural estimators.  相似文献   

8.
In this article, we present the problem of selecting a good stochastic system with high probability and minimum total simulation cost when the number of alternatives is very large. We propose a sequential approach that starts with the Ordinal Optimization procedure to select a subset that overlaps with the set of the actual best m% systems with high probability. Then we use Optimal Computing Budget Allocation to allocate the available computing budget in a way that maximizes the Probability of Correct Selection. This is followed by a Subset Selection procedure to get a smaller subset that contains the best system among the subset that is selected before. Finally, the Indifference-Zone procedure is used to select the best system among the survivors in the previous stage. The numerical test involved with all these procedures shows the results for selecting a good stochastic system with high probability and a minimum number of simulation samples, when the number of alternatives is large. The results also show that the proposed approach is able to identify a good system in a very short simulation time.  相似文献   

9.
The problem of selecting the normal population with the largest population mean when the populations have a common known variance is considered. A two-stage procedure is proposed which guarantees the same probability requirement using the indifference-zone approach as does the single-stage procedure of Bechhofer (1954). The two-stage procedure has the highly desirable property that the expected total number of observations required by the procedure is always less than the total number of observations required by the corresponding single-stage procedure, regardless of the configuration of the population means. The saving in expected total number of observations can be substantial, particularly when the configuration of the population means is favorable to the experimenter. The saving is accomplished by screening out “non-contending” populations in the first stage, and concentrating sampling only on “contending” populations in the second stage.

The two-stage procedure can be regarded as a composite one which uses a screening subset-type approach (Gupta (1956), (1965)) in the first stage, and an indifference-zone approach (Bechhofer (1954)) applied to all populations retained in the selected sub-set in the second stage. Constants to implement the procedure for various k and P? are provided, as are calculations giving the saving in expected total sample size if the two-stage procedure is used in place of the corresponding single-stage procedure.  相似文献   

10.
Among k independent two-parameter exponential distributions which have the common scale parameter, the lower extreme population (LEP) is the one with the smallest location parameter and the upper extreme population (UEP) is the one with the largest location parameter. Given a multiply type II censored sample from each of these k independent two-parameter exponential distributions, 14 estimators for the unknown location parameters and the common unknown scale parameter are considered. Fourteen simultaneous confidence intervals (SCIs) for all distances from the extreme populations (UEP and LEP) and from the UEP from these k independent exponential distributions under the multiply type II censoring are proposed. The critical values are obtained by the Monte Carlo method. The optimal SCIs among 14 methods are identified based on the criteria of minimum confidence length for various censoring schemes. The subset selection procedures of extreme populations are also proposed and two numerical examples are given for illustration.  相似文献   

11.
A procedure for selecting a Poisson population with smallest mean is considered using an indifference zone approach. The objective is to determine the smallest sample size n required from k ≥ 2 populations in order to attain the desired probability of correct selection. Since the means procedure is not consistent with respect to the difference or ratio alone, two distance measures are used simultaneously to overcome the difficulty in obtaining the smallest probability of correct selection that is greater than some specified limit. The constants required to determine n are computed and tabulated. The asymptotic results are derived using a normal approximation. A comparison with the exact results indicates that the proposed approximation works well. Only in the extreme cases small increases in n are observed. An example of industrial accident data is used to illustrate this procedure.  相似文献   

12.
In most practical situations to which the analysis of variance tests are applied, they do not supply the information that the experimenter aims at. If, for example, in one-way ANOVA the hypothesis is rejected in actual application of the F-test, the resulting conclusion that the true means θ1,…,θk are not all equal, would by itself usually be insufficient to satisfy the experimenter. In fact his problems would begin at this stage. The experimenter may desire to select the “best” population or a subset of the “good” populations; he may like to rank the populations in order of “goodness” or he may like to draw some other inferences about the parameters of interest.

The extensive literature on selection and ranking procedures depends heavily on the use of independence between populations (block, treatments, etc.) in the analysis of variance. In practical applications, it is desirable to drop this assumption or independence and consider cases more general than the normal.

In the present paper, we derive a method to construct optimal (in some sense) selection procedures to select a nonempty subset of the k populations containing the best population as ranked in terms of θi’s which control the size of the selected subset and which maximizes the minimum average probability of selecting the best. We also consider the usual selection procedures in one-way ANOVA based on the generalized least squares estimates and apply the method to two-way layout case. Some examples are discussed and some results on comparisons with other procedures are also obtained.  相似文献   

13.
Confidence statements about location (or scale) parameters associated with K populations, which may be used in making selection decisions about those populations, are investigated. When a subset of fixed size t is selected from the K populations a lower bound is obtained for the minimum selected parameter as a function of the maximum non-selected parameter. Tables are produced for the normal means case when the variance is common but unknown. It is pointed out that these tables may be used to find confidence intervals discussed by Hsu (1984  相似文献   

14.
15.
Consider k (≥2) independent Type I extreme value populations with unknown location parameters and common known scale parameter. With samples of same size, we study procedures based on the sample means for (1) selecting the population having the largest location parameter, (2) selecting the population having the smallest location parameter, and (3) testing for equality of all the location parameters. We use Bechhofer's indifference-zone and Gupta's subset selection formulations. Tables of constants for implemention are provided based on approximation for the distribution of the standardized sample mean by a generalized Tukey's lambda distribution. Examples are provided for all procedures.  相似文献   

16.
ABSTRACT

Consider k(≥ 2) independent exponential populations Π1, Π2, …, Π k , having the common unknown location parameter μ ∈ (?∞, ∞) (also called the guarantee time) and unknown scale parameters σ1, σ2, …σ k , respectively (also called the remaining mean lifetimes after the completion of guarantee times), σ i  > 0, i = 1, 2, …, k. Assume that the correct ordering between σ1, σ2, …, σ k is not known apriori and let σ[i], i = 1, 2, …, k, denote the ith smallest of σ j s, so that σ[1] ≤ σ[2] ··· ≤ σ[k]. Then Θ i  = μ + σ i is the mean lifetime of Π i , i = 1, 2, …, k. Let Θ[1] ≤ Θ[2] ··· ≤ Θ[k] denote the ranked values of the Θ j s, so that Θ[i] = μ + σ[i], i = 1, 2, …, k, and let Π(i) denote the unknown population associated with the ith smallest mean lifetime Θ[i] = μ + σ[i], i = 1, 2, …, k. Based on independent random samples from the k populations, we propose a selection procedure for the goal of selecting the population having the longest mean lifetime Θ[k] (called the “best” population), under the subset selection formulation. Tables for the implementation of the proposed selection procedure are provided. It is established that the proposed subset selection procedure is monotone for a general k (≥ 2). For k = 2, we consider the loss measured by the size of the selected subset and establish that the proposed subset selection procedure is minimax among selection procedures that satisfy a certain probability requirement (called the P*-condition) for the inclusion of the best population in the selected subset.  相似文献   

17.
Independent random samples are drawn from k (≥ 2) populations, having probability density functions belonging to a general truncation parameter family. The populations associated with the smallest and the largest truncation parameters are called the lower extreme population (LEP) and the upper extreme population (UEP), respectively. For the goal of selecting the LEP (UEP), we consider the natural selection rule, which selects the population corresponding to the smallest (largest) of k maximum likelihood estimates as the LEP (UEP), and study the problem of estimating the truncation parameter of the selected population. We unify some of the existing results, available in the literature for specific distributions, by deriving the uniformly minimum variance unbiased estimator (UMVUE) for the truncation parameter of the selected population. The conditional unbiasedness of the UMVUE is also checked. The cases of the left and the right truncation parameter families are dealt with separately. Finally, we consider an application to the Pareto probability model, where the performances of the UMVUE and three other natural estimators are compared with each other, under the mean squared error criterion.  相似文献   

18.
Let Π1, …, Π p be p(p≥2) independent Poisson populations with unknown parameters θ1, …, θ p , respectively. Let X i denote an observation from the population Π i , 1≤ip. Suppose a subset of random size, which includes the best population corresponding to the largest (smallest) θ i , is selected using Gupta and Huang [On subset selection procedures for Poisson populations and some applications to the multinomial selection problems, in Applied Statistics, R.P. Gupta, ed., North-Holland, Amsterdam, 1975, pp. 97–109] and (Gupta et al. [On subset selection procedures for Poisson populations, Bull. Malaysian Math. Soc. 2 (1979), pp. 89–110]) selection rule. In this paper, the problem of estimating the average worth of the selected subset is considered under the squared error loss function. The natural estimator is shown to be biased and the UMVUE is obtained using Robbins [The UV method of estimation, in Statistical Decision Theory and Related Topics-IV, S.S. Gupta and J.O. Berger, eds., Springer, New York, vol. 1, 1988, pp. 265–270] UV method of estimation. The natural estimator is shown to be inadmissible, by constructing a class of dominating estimators. Using Monte Carlo simulations, the bias and risk of the natural, dominated and UMVU estimators are computed and compared.  相似文献   

19.
The problems of selecting the larger location parameter of two exponential distributions are discussed. When the scale parameters are the same but unknown, we consider the procedure of Desu et al. (1977) in detail, and study some of its exact and asymptotic properties. We indicate how this procedure can be modified along the lines of Mukhopadhyay (1979, 1980) to achieve first-order asymptotic efficiency. We then propose a sequential procedure for this set-up and show that it is asymptotically second-order efficient according to Ghosh and Mukhopadhyay (1981). In case the scale parameters are completely unknown and unequal, we propose a two-stage procedure that guarantees the probability of correct selection to exceed the prescribed nominal level in the preference zone. We do not need any new tables to implement this particular procedure other than those in Krishnaiah and Armitage (1964), Gupta and Sobel (1962), Guttman and Milton (1969). We also propose a sequential method in this case and derive some of its asymptotic properties.  相似文献   

20.
This paper treats the problem of comparing different evaluations of procedures which rank the variances of k normal populations. Procedures are evaluated on the basis of appropriate loss functions for a particular goal. The goal considered involves ranking the variances of k independent normal populations when the corresponding population means are unknown. The variances are ranked by selecting samples of size n from each population and using the sample variances to obtain the ranking. Our results extend those of various authors who looked at the narrower problem of evaluating the standard proceduv 3 associated with selecting the smallest of the population variances (see e.g.,P. Somerville (1975)).

Different loss functions (both parametric and non-parametric) appropriate to the particular goal under consideration are proposed. Procedures are evaluated by the performance of their risk over a particular preference zone. The sample size n, the least favorable parametric configuration, and the maximum value of the risk are three quantities studied for each procedure. When k is small these quantities, calculated by numerical simulation, show which loss functions respond better and which respond worse to increases in sample size. Loss functions are compared with one another according to the extent of this response. Theoretical results are given for the case of asymptotically large k. It is shown that for certain cases the error incurred by using these asymptotic results is small when k is only moderately large.

This work is an outgrowth of and extends that of J. Reeves and M.J. Sobel (1987) by comparing procedures on the basis of the sample size (perpopulation) required to obtain various bounds on the associated risk functions. New methodologies are developed to evaluate complete ranking procedures in different settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号