首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Using Average Lifetime Dose Rate for Intermittent Exposures to Carcinogens   总被引:2,自引:0,他引:2  
The effect of using the average dose rate over a lifetime as a representative measure of exposure to carcinogens is investigated by comparing the true theoretical multistage intermittent-dosing lifetime low-dose excess risk to the theoretical multistage continuous-dosing lifetime risk corresponding to the average lifetime dose rate. It is concluded that low-dose risk estimates based on the average lifetime dose rate may overestimate the true risk by several orders of magnitude, but that they never underestimate the true risk by more than a factor of k/r, where k is the total number of stages in the multistage model and r is the number of stages that are dose-related.  相似文献   

3.
In light of the Armitage-Doll multistage carcinogenesis theory, this paper examines the assumption that an additive relative risk relationship is indicative of two carcinogens that affect the same stage in the cancer process. We present formulas to compute excess cancer risks for a variety of patterns for limited exposure durations to two carcinogens that affect the first and penultimate stages; and using an index of synergy proposed by Thomas (1982), we find a number of these patterns to produce additive, or nearly additive, relative risk relationships. The consistent feature of these patterns is that the two exposure periods are of short duration and occur close together.  相似文献   

4.
Cryptosporidium human dose‐response data from seven species/isolates are used to investigate six models of varying complexity that estimate infection probability as a function of dose. Previous models attempt to explicitly account for virulence differences among C. parvum isolates, using three or six species/isolates. Four (two new) models assume species/isolate differences are insignificant and three of these (all but exponential) allow for variable human susceptibility. These three human‐focused models (fractional Poisson, exponential with immunity and beta‐Poisson) are relatively simple yet fit the data significantly better than the more complex isolate‐focused models. Among these three, the one‐parameter fractional Poisson model is the simplest but assumes that all Cryptosporidium oocysts used in the studies were capable of initiating infection. The exponential with immunity model does not require such an assumption and includes the fractional Poisson as a special case. The fractional Poisson model is an upper bound of the exponential with immunity model and applies when all oocysts are capable of initiating infection. The beta Poisson model does not allow an immune human subpopulation; thus infection probability approaches 100% as dose becomes huge. All three of these models predict significantly (>10x) greater risk at the low doses that consumers might receive if exposed through drinking water or other environmental exposure (e.g., 72% vs. 4% infection probability for a one oocyst dose) than previously predicted. This new insight into Cryptosporidium risk suggests additional inactivation and removal via treatment may be needed to meet any specified risk target, such as a suggested 10?4 annual risk of Cryptosporidium infection.  相似文献   

5.
In the absence of data from multiple-compound exposure experiments, the health risk from exposure to a mixture of chemical carcinogens is generally based on the results of the individual single-compound experiments. A procedure to obtain an upper confidence limit on the total risk is proposed under the assumption that total risk for the mixture is additive. It is shown that the current practice of simply summing the individual upper-confidence-limit risk estimates as the upper-confidence-limit estimate on the total excess risk of the mixture may overestimate the true upper bound. In general, if the individual upper-confidence-limit risk estimates are on the same order of magnitude, the proposed method gives a smaller upper-confidence-limit risk estimate than the estimate based on summing the individual upper-confidence-limit estimates; the difference increases as the number of carcinogenic components increases.  相似文献   

6.
In 1980, the U.S. Supreme Court vacated a revised occupational standard for benzene, stating that the Occupational Safety and Health Administration (OSHA) had failed to demonstrate that significant health risks existed under the current standard. This decision has been interpreted by OSHA as requiring the consideration of quantitative risk assessments, whenever possible, in the development of regulations for occupational carcinogens. In light of this decision, the available epidemiologic evidence was used to generate a quantitative risk assessment for benzene. Uncertainties regarding the levels and lengths of benzene exposure for the studied cohorts were incorporated into the analysis. Based on the one-hit model, the assessment indicates that a working lifetime exposure to benzene at the current permissible exposure level (10 ppm) poses a substantial excess risk of death from leukemia. This report discusses the calculation of the risk estimates, the basis for relying on certain assumptions, and the inherent limitations of using epidemiologic studies to quantify cancer risks.  相似文献   

7.
Vinyl chloride (VC) was used as a propellant in a limited percentage of aerosol hairspray products in the United States from approximately 1967 to 1973. The question has arisen whether occupational exposures of hairdressers to VC-containing hairsprays in hair salons were sufficient to increase the risk for developing hepatic angiosarcoma (HAS). Transient two-zone and steady-state three-zone models were used to estimate the historical airborne concentration of VC for individual hairdressers using hairspray as well as estimated contributions from other hairdressers in the same salon. Concentrations of VC were modeled for small, medium, and large salons, as well as a representative home salon. Model inputs were determined using published literature, and variability in these inputs was also considered using Monte Carlo techniques. The 95th percentile for the daily time-weighted average exposure for small, medium, and large salons, assuming a market-share fraction of VC-containing hairspray use from the Monte Carlo analysis, was about 0.3 ppm, and for the home salon scenario was 0.1 ppm. The 95th percentile value for the cumulative lifetime exposure of the hairdressers was 2.8 ppm-years for the home salon scenario and 2.0 ppm-years for the small, medium, and large salon scenarios. If using the assumption that all hairsprays used in a salon contained VC, the 95th percentile of the theoretical lifetime cumulative dose was estimated to be 52–79 ppm-years. Estimated lifetime doses were all below the threshold dose for HAS of about 300 to 500 ppm-years reported in the published epidemiology literature.  相似文献   

8.
Increased cell proliferation increases the opportunity for transformations of normal cells to malignant cells via intermediate cells. Nongenotoxic cytotoxic carcinogens that increase cell proliferation rates to replace necrotic cells are likely to have a threshold dose for cytotoxicity below which necrosis and hence, carcinogenesis do not occur. Thus, low dose cancer risk estimates based upon nonthreshold, linear extrapolation are inappropriate for this situation. However, a threshold dose is questionable if a nongenotoxic carcinogen acts via a cell receptor. Also, a nongenotoxic carcinogen that increases the cell proliferation rate, via the cell division rate and/or cell removal rate by apoptosis, by augmenting an existing endogenous mechanism is not likely to have a threshold dose. Whether or not a threshold dose exists for nongenotoxic carcinogens, it is of interest to study the relationship between lifetime tumor incidence and the cell proliferation rate. The Moolgavkar–Venzon–Knudson biologically based stochastic two-stage clonal expansion model is used to describe a carcinogenic process. Because the variability in cell proliferation rates among animals often makes it impossible to detect changes of less than 20% in the rate, it is shown that small changes in the cell proliferation rate, that may be obscured by the background noise in rates, can produce large changes in the lifetime tumor incidence as calculated from the Moolgavkar–Venzon–Knudson model. That is, dose response curves for cell proliferation and tumor incidence do not necessarily mimic each other. This makes the use of no observed effect levels (NOELs) for cell proliferation rates often inadmissible for establishing acceptable daily intakes (ADIs) of nongenotoxic carcinogens. In those cases where low dose linearity is not likely, a potential alternative to a NOEL is a benchmark dose corresponding to a small increase in the cell proliferation rate, e. g., 1%, to which appropriate safety (uncertainty) factors can be applied to arrive at an ADI.  相似文献   

9.
This study utilizes old and new Norovirus (NoV) human challenge data to model the dose‐response relationship for human NoV infection. The combined data set is used to update estimates from a previously published beta‐Poisson dose‐response model that includes parameters for virus aggregation and for a beta‐distribution that describes variable susceptibility among hosts. The quality of the beta‐Poisson model is examined and a simpler model is proposed. The new model (fractional Poisson) characterizes hosts as either perfectly susceptible or perfectly immune, requiring a single parameter (the fraction of perfectly susceptible hosts) in place of the two‐parameter beta‐distribution. A second parameter is included to account for virus aggregation in the same fashion as it is added to the beta‐Poisson model. Infection probability is simply the product of the probability of nonzero exposure (at least one virus or aggregate is ingested) and the fraction of susceptible hosts. The model is computationally simple and appears to be well suited to the data from the NoV human challenge studies. The model's deviance is similar to that of the beta‐Poisson, but with one parameter, rather than two. As a result, the Akaike information criterion favors the fractional Poisson over the beta‐Poisson model. At low, environmentally relevant exposure levels (<100), estimation error is small for the fractional Poisson model; however, caution is advised because no subjects were challenged at such a low dose. New low‐dose data would be of great value to further clarify the NoV dose‐response relationship and to support improved risk assessment for environmentally relevant exposures.  相似文献   

10.
The excess cancer risk that might result from exposure to a mixture of chemical carcinogens usually must be estimated using data from experiments conducted with individual chemicals. In estimating such risk, it is commonly assumed that the total risk due to the mixture is the sum of the risks of the individual components, provided that the risks associated with individual chemicals at levels present in the mixture are low. This assumption, while itself not necessarily conservative, has led to the conservative practice of summing individual upper-bound risk estimates in order to obtain an upper bound on the total excess cancer risk for a mixture. Less conservative procedures are described here and are illustrated for the case of a mixture of four carcinogens.  相似文献   

11.
In recent years physiologically based pharmacokinetic models have come to play an increasingly important role in risk assessment for carcinogens. The hope is that they can help open the black box between external exposure and carcinogenic effects to experimental observations, and improve both high-dose to low-dose and interspecies projections of risk. However, to date, there have been only relatively preliminary efforts to assess the uncertainties in current modeling results. In this paper we compare the physiologically based pharmacokinetic models (and model predictions of risk-related overall metabolism) that have been produced by seven different sets of authors for perchloroethylene (tetrachloroethylene). The most striking conclusion from the data is that most of the differences in risk-related model predictions are attributable to the choice of the data sets used for calibrating the metabolic parameters. Second, it is clear that the bottom-line differences among the model predictions are appreciable. Overall, the ratios of low-dose human to bioassay rodent metabolism spanned a 30-fold range for the six available human/rat comparisons, and the seven predicted ratios of low-dose human to bioassay mouse metabolism spanned a 13-fold range. (The greater range for the rat/human comparison is attributable to a structural assumption by one author group of competing linear and saturable pathways, and their conclusion that the dangerous saturable pathway constitutes a minor fraction of metabolism in rats.) It is clear that there are a number of opportunities for modelers to make different choices of model structure, interpretive assumptions, and calibrating data in the process of constructing pharmacokinetic models for use in estimating "delivered" or "biologically effective" dose for carcinogenesis risk assessments. We believe that in presenting the results of such modeling studies, it is important for researchers to explore the results of alternative, reasonably likely approaches for interpreting the available data--and either show that any conclusions they make are relatively insensitive to particular interpretive choices, or to acknowledge the differences in conclusions that would result from plausible alternative views of the world.  相似文献   

12.
For the vast majority of chemicals that have cancer potency estimates on IRIS, the underlying database is deficient with respect to early-life exposures. This data gap has prevented derivation of cancer potency factors that are relevant to this time period, and so assessments may not fully address children's risks. This article provides a review of juvenile animal bioassay data in comparison to adult animal data for a broad array of carcinogens. This comparison indicates that short-term exposures in early life are likely to yield a greater tumor response than short-term exposures in adults, but similar tumor response when compared to long-term exposures in adults. This evidence is brought into a risk assessment context by proposing an approach that: (1) does not prorate children's exposures over the entire life span or mix them with exposures that occur at other ages; (2) applies the cancer slope factor from adult animal or human epidemiology studies to the children's exposure dose to calculate the cancer risk associated with the early-life period; and (3) adds the cancer risk for young children to that for older children/adults to yield a total lifetime cancer risk. The proposed approach allows for the unique exposure and pharmacokinetic factors associated with young children to be fully weighted in the cancer risk assessment. It is very similar to the approach currently used by U.S. EPA for vinyl chloride. The current analysis finds that the database of early life and adult cancer bioassays supports extension of this approach from vinyl chloride to other carcinogens of diverse mode of action. This approach should be enhanced by early-life data specific to the particular carcinogen under analysis whenever possible.  相似文献   

13.
Applications of methods for carcinogenic risk assessment often focus on estimating lifetime cancer risk. With intermittent or time-dependent exposures, lifetime risk is often approximated on the basis of a lifetime average daily dose (LADD). In this article, we show that there exists a lifetime equivalent constant dose (LECD) which leads to the same lifetime risk as the actual time-dependent exposure pattern. The ratio C = LECD/LADD then provides a measure of accuracy of risk estimates based on the LADD, as well as a basis for correcting such estimates. Theoretical results derived under the classical multistage model and the two-stage birth-death-mutation model suggest that the maximum value of C, which represents the factor by which the LADD may lead to underestimates of risk, will often lie in the range of 2- to 5-fold. The practical application of these results is illustrated in the case of astronauts subjected to relatively short-term exposure to volatile organics in a closed space station environment, and in the case of the ingestion of pesticide residues in food where consumption patterns vary with age.  相似文献   

14.
Use of Acute Toxicity to Estimate Carcinogenic Risk   总被引:1,自引:0,他引:1  
Data on the effects of human exposure to carcinogens are limited, so that estimation of the risks of carcinogens must be obtained indirectly. Current risk estimates are generally based on lifetime animal bioassays which are expensive and which take more than two years to complete. We here show how data on acute toxicity can be used to make a preliminary estimate of carcinogenic risk and give an idea of the uncertainty in that risk estimate. The estimates obtained are biased upwards, and so are useful for setting interim standards and determining whether further study is worthwhile. A general scheme which incorporates the use of such estimates is outlined, and it is shown by example how adoption of the procedures suggested could have prevented regulatory hiatus in the past.  相似文献   

15.
P Milvy 《Risk analysis》1986,6(1):69-79
A simple relationship is formulated that helps to discriminate between acceptable and unacceptable individual lifetime risks (RL) to populations that are exposed to chemical carcinogens. The relationship is an empirical one and is developed using objective risk data as well as subjective risk levels that have found substantial acceptance among those concerned with carcinogenic risk assessment issues. The expression sets acceptable levels of lifetime carcinogenic risk and is a function of the total population exposed to the carcinogen. Its use in risk assessment and risk management provides guidance in distinguishing those carcinogens that should be regulated because of the health hazard they pose from those whose regulation may not be needed.  相似文献   

16.
Two forms of single‐hit infection dose‐response models have previously been developed to assess available data from human feeding trials and estimate the norovirus dose‐response relationship. The mechanistic interpretations of these models include strong assumptions that warrant reconsideration: the first study includes an implicit assumption that there is no immunity to Norwalk virus among the specific study population, while the recent second study includes assumptions that such immunity could exist and that the nonimmune have no defensive barriers to prevent infection from exposure to just one virus. Both models addressed unmeasured virus aggregation in administered doses. In this work, the available data are reanalyzed using a generalization of the first model to explore these previous assumptions. It was hypothesized that concurrent estimation of an unmeasured degree of virus aggregation and important dose‐response parameters could lead to structural nonidentifiability of the model (i.e., that a diverse range of alternative mechanistic interpretations yield the same optimal fit), and this is demonstrated using the profile likelihood approach and by algebraic proof. It is also demonstrated that omission of an immunity parameter can artificially inflate the estimated degree of aggregation and falsely suggest high susceptibility among the nonimmune. The currently available data support the assumption of immunity within the specific study population, but provide only weak information about the degree of aggregation and susceptibility among the nonimmune. The probability of infection at low and moderate doses may be much lower than previously asserted, but more data from strategically designed dose‐response experiments are needed to provide adequate information.  相似文献   

17.
The U.S. Environmental Protection Agency (USEPA) guidelines for cancer risk assessment recognize that some chemical carcinogens may have a site-specific mode of action (MOA) involving mutation and cell-killing-induced hyperplasia. The guidelines recommend that for such dual MOA (DMOA) carcinogens, judgment should be used to compare and assess results using separate "linear" (genotoxic) versus "nonlinear" (nongenotoxic) approaches to low-level risk extrapolation. Because the guidelines allow this only when evidence supports reliable risk extrapolation using a validated mechanistic model, they effectively prevent addressing MOA uncertainty when data do not fully validate such a model but otherwise clearly support a DMOA. An adjustment-factor approach is proposed to address this gap, analogous to reference-dose procedures used for classic toxicity endpoints. By this method, even when a "nonlinear" toxicokinetic model cannot be fully validated, the effect of DMOA uncertainty on low-dose risk can be addressed. Application of the proposed approach was illustrated for the case of risk extrapolation from bioassay data on rat nasal tumors induced by chronic lifetime exposure to naphthalene. Bioassay data, toxicokinetic data, and pharmacokinetic analyses were determined to indicate that naphthalene is almost certainly a DMOA carcinogen. Plausibility bounds on rat-tumor-type-specific DMOA-related uncertainty were obtained using a mechanistic two-stage cancer risk model adapted to reflect the empirical link between genotoxic and cytotoxic effects of the most potent identified genotoxic naphthalene metabolites, 1,2- and 1,4-naphthoquinone. Bound-specific adjustment factors were then used to reduce naphthalene risk estimated by linear extrapolation (under the default genotoxic MOA assumption), to account for the DMOA exhibited by this compound.  相似文献   

18.
Hwang  Jing-Shiang  Chen  James J. 《Risk analysis》1999,19(6):1071-1076
The estimation of health risks from exposure to a mixture of chemical carcinogens is generally based on the combination of information from several available single compound studies. The current practice of directly summing the upper bound risk estimates of individual carcinogenic components as an upper bound on the total risk of a mixture is known to be generally too conservative. Gaylor and Chen (1996, Risk Analysis) proposed a simple procedure to compute an upper bound on the total risk using only the upper confidence limits and central risk estimates of individual carcinogens. The Gaylor-Chen procedure was derived based on an underlying assumption of the normality for the distributions of individual risk estimates. In this paper we evaluated the Gaylor-Chen approach in terms of the coverage probability. The performance of the Gaylor-Chen approach in terms the coverages of the upper confidence limits on the true risks of individual carcinogens. In general, if the coverage probabilities for the individual carcinogens are all approximately equal to the nominal level, then the Gaylor-Chen approach should perform well. However, the Gaylor-Chen approach can be conservative or anti-conservative if some or all individual upper confidence limit estimates are conservative or anti-conservative.  相似文献   

19.
Experimental Design of Bioassays for Screening and Low Dose Extrapolation   总被引:1,自引:0,他引:1  
Relatively high doses of chemicals generally are employed in animal bioassays to detect potential carcinogens with relatively small numbers of animals. The problem investigated here is the development of experimental designs which are effective for high to low dose extrapolation for tumor incidence as well as for screening (detecting) carcinogens. Several experimental designs are compared over a wide range of different dose response curves. Linear extrapolation is used below the experimental data range to establish an upper bound on carcinogenic risk at low doses. The goal is to find experimental designs which minimize the upper bound on low dose risk estimates (i.e., maximize the allowable dose for a given level of risk). The maximum tolerated dose (MTD) is employed for screening purposes. Among the designs investigated, experiments with doses at the MTD, 1/2 MTD, 1/4 MTD, and controls generally provide relatively good data for low dose extrapolation with relatively good power for detecting carcinogens. For this design, equal numbers of animals per dose level perform as well as unequal allocations.  相似文献   

20.
Environmental tobacco smoke (ETS)has recently been determined by U.S. environmental and occupational health authorities to be a human carcinogen. We develop a model which permits using atmospheric nicotine measurements to estimate nonsmokers’ETS lung cancer risks in individual workplaces for the first time. We estimate that during the 1980s, the U.S. nonsmoking adult population's median nicotine lung exposure (homes and workplaces combined)was 143 micrograms (μg)of nicotine daily, and that most-exposed adult nonsmokers inhaled 1430 μg/day. These exposure estimates are validated by pharmacokinetic modeling which yields the corresponding steady-state dose of the nicotine metabolite, cotinine. For U.S. adult nonsmokers of working age, we estimate median cotinine values of about 1.0 nanogram per milliliter (ng/ml)in plasma, and 6.2 ng/ml in urine; for most-exposed nonsmokers, we estimate cotinine concentrations of about 10 ng/ml in plasma and 62 ng/ml in urine. These values are consistent to within 15% of the cotinine values observed in contemporaneous clinical epidemiological studies. Corresponding median risk from ETS exposure in U.S. nonsmokers during the 1980s is estimated at about two lung cancer deaths (LCDs)per 1000 at risk, and for most-exposed nonsmokers, about two LCDs per 100. Risks abroad appear similar. Modeling of the lung cancer mortality risk from passive smoking suggests that de minimis [i.e., “acceptable” (10-6)], risk occurs at an 8-hr time-weighted-average exposure concentration of 7.5 nanograms of ETS nicotine per cubic meter of workplace air for a working lifetime of 40 years. This model is based upon a linear exposure-response relationship validated by physical, clinical, and epidemiological data. From available data, it appears that workplaces without effective smoking policies considerably exceed this de minimis risk standard. For a substantial fraction of the 59 million nonsmoking workers in the U.S., current workplace exposure to ETS also appears to pose risks exceeding the de manifestos risk level above which carcinogens are strictly regulated by the federal government.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号