首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

In this paper, we present a fractional decomposition of the probability generating function of the innovation process of the first-order non-negative integer-valued autoregressive [INAR(1)] process to obtain the corresponding probability mass function. We also provide a comprehensive review of integer-valued time series models, based on the concept of thinning operators with geometric-type marginals. In particular, we develop two fractional approaches to obtain the distribution of innovation processes of the INAR(1) model and show that the distribution of the innovations sequence has geometric-type distribution. These approaches are discussed in detail and illustrated through a few examples.  相似文献   

2.
In this paper, we introduce a new non-negative integer-valued autoregressive time series model based on a new thinning operator, so called generalized zero-modified geometric (GZMG) thinning operator. The first part of the paper is devoted to the distribution, GZMG distribution, which is obtained as the convolution of the zero-modified geometric (ZMG) distributed random variables. Some properties of this distribution are derived. Then, we construct a thinning operator based on the counting processes with ZMG distribution. Finally, an INAR(1) time series model is introduced and its properties including estimation issues are derived and discussed. A small Monte Carlo experiment is conducted to evaluate the performance of maximum likelihood estimators in finite samples. At the end of the paper, we consider an empirical illustration of the introduced INAR(1) model.  相似文献   

3.
Multivariate count time series data occur in many different disciplines. The class of INteger-valued AutoRegressive (INAR) processes has the great advantage to consider explicitly both the discreteness and autocorrelation characterizing this type of data. Moreover, extensions of the simple INAR(1) model to the multi-dimensional space make it possible to model more than one series simultaneously. However, existing models do not offer great flexibility for dependence modelling, allowing only for positive correlation. In this work, we consider a bivariate INAR(1) (BINAR(1)) process where cross-correlation is introduced through the use of copulas for the specification of the joint distribution of the innovations. We mainly emphasize on the parametric case that arises under the assumption of Poisson marginals. Other marginal distributions are also considered. A short application on a bivariate financial count series illustrates the model.  相似文献   

4.
Even though integer-valued time series are common in practice, the methods for their analysis have been developed only in recent past. Several models for stationary processes with discrete marginal distributions have been proposed in the literature. Such processes assume the parameters of the model to remain constant throughout the time period. However, this need not be true in practice. In this paper, we introduce non-stationary integer-valued autoregressive (INAR) models with structural breaks to model a situation, where the parameters of the INAR process do not remain constant over time. Such models are useful while modelling count data time series with structural breaks. The Bayesian and Markov Chain Monte Carlo (MCMC) procedures for the estimation of the parameters and break points of such models are discussed. We illustrate the model and estimation procedure with the help of a simulation study. The proposed model is applied to the two real biometrical data sets.  相似文献   

5.
We consider the first-order Poisson autoregressive model proposed by McKenzie [Some simple models for discrete variate time series. Water Resour Bull. 1985;21:645–650] and Al-Osh and Alzaid [First-order integer valued autoregressive (INAR(1)) process. J Time Ser Anal. 1987;8:261–275], which may be suitable in situations where the time series data are non-negative and integer valued. We derive the second-order bias of the squared difference estimator [Weiß. Process capability analysis for serially dependent processes of Poisson counts. J Stat Comput Simul. 2012;82:383–404] for one of the parameters and show that this bias can be used to define a bias-reduced estimator. The behaviour of a modified conditional least-squares estimator is also studied. Furthermore, we access the asymptotic properties of the estimators here discussed. We present numerical evidence, based upon Monte Carlo simulation studies, showing that the here proposed bias-adjusted estimator outperforms the other estimators in small samples. We also present an application to a real data set.  相似文献   

6.
The innovations of an INAR(1) process (integer-valued autoregressive) are usually assumed to be unobservable. There are, however, situations in practice, where also the innovations can be uncovered, i.e. where we are concerned with a fully observed INAR(1) process. We analyze stochastic properties of such a fully observed INAR(1) process and explore the relation between the INAR(1) model and certain metapopulation models. We show how the additional knowledge about the innovations can be used for parameter estimation, for model diagnostics, and for forecasting. Our findings are illustrated with two real-data examples.  相似文献   

7.
ABSTRACT

Non-stationarity in bivariate time series of counts may be induced by a number of time-varying covariates affecting the bivariate responses due to which the innovation terms of the individual series as well as the bivariate dependence structure becomes non-stationary. So far, in the existing models, the innovation terms of individual INAR(1) series and the dependence structure are assumed to be constant even though the individual time series are non-stationary. Under this assumption, the reliability of the regression and correlation estimates is questionable. Besides, the existing estimation methodologies such as the conditional maximum likelihood (CMLE) and the composite likelihood estimation are computationally intensive. To address these issues, this paper proposes a BINAR(1) model where the innovation series follow a bivariate Poisson distribution under some non-stationary distributional assumptions. The method of generalized quasi-likelihood (GQL) is used to estimate the regression effects while the serial and bivariate correlations are estimated using a robust moment estimation technique. The application of model and estimation method is made in the simulated data. The GQL method is also compared with the CMLE, generalized method of moments (GMM) and generalized estimating equation (GEE) approaches where through simulation studies, it is shown that GQL yields more efficient estimates than GMM and equally or slightly more efficient estimates than CMLE and GEE.  相似文献   

8.
The INAR(1) model (integer-valued autoregressive) is commonly used to model serially dependent processes of Poisson counts. We propose several asymptotic simultaneous confidence regions for the two parameters of a Poisson INAR(1) model, and investigate their performance and robustness for finite-length time series in a simulation study. Practical recommendations are derived, and the application of the confidence regions is illustrated by a real-data example.  相似文献   

9.
Integer-valued autoregressive (INAR) processes form a very useful class of processes suitable to model time series of counts. Several practically relevant estimators based on INAR data are known to be systematically biased away from their population values, e.g. sample autocovariances, sample autocorrelations, or the dispersion index. We propose to do bias correction for such estimators by using a recently proposed INAR-type bootstrap scheme that is tailor-made for INAR processes, and which has been proven to be asymptotically consistent under general conditions. This INAR bootstrap allows an implementation with and without parametrically specifying the innovations' distribution. To judge the potential of corresponding bias correction, we compare these bootstraps in simulations to several competitors that include the AR bootstrap and block bootstrap. Finally, we conclude with an illustrative data application.  相似文献   

10.
Integer-valued time series models make use of thinning operators for coherency in the nature of count data. However, the thinning operators make residuals unobservable and are the main difficulty in developing diagnostic tools for autocorrelated count data. In this regard, we introduce a new residual, which takes the form of predictive distribution functions, to assess probabilistic forecasts, and this new residual is supplemented by a modified usual residuals. Under integer-valued autoregressive (INAR) models, the properties of these two residuals are investigated and used to evaluate the predictive performance and model adequacy of the INAR models. We compare our residuals with the existing residuals through simulation studies and apply our method to select an appropriate INAR model for an over-dispersed real data.  相似文献   

11.
The integer-valued autoregressive (INAR) model has been widely used in diverse fields. Since the task of identifying the underlying distribution of time-series models is a crucial step for further inferences, we consider the goodness-of-fit test for the Poisson assumption on first-order INAR models. For a test, we employ Fisher’s dispersion test due to its simplicity and then derive its null limiting distribution. As an illustration, a simulation study and real data analysis are conducted for the counts of coal mining disasters, the monthly crime data set from New South Wales, and the annual numbers of worldwide earthquakes.  相似文献   

12.
The INAR(k) model has been widely used in various kinds of fields. However, there are little discussions about the INAR(k) model with the occasional level shift random noise. In this paper, the maximum likelihood estimation of parameter based on martingale difference sequence is given, the log empirical likelihood ratio test statistic is obtained and the test statistic converges to chi-square distribution, we prove that the confidence region of the parameter is convex. Furthermore, the numerical simulation of the proposed INAR(k) model is given, which illustrates the effectiveness of the model. Then, the proofs of asymptotic results are given in the Appendix.  相似文献   

13.
The Poisson distribution is a simple and popular model for count-data random variables, but it suffers from the equidispersion requirement, which is often not met in practice. While models for overdispersed counts have been discussed intensively in the literature, the opposite phenomenon, underdispersion, has received only little attention, especially in a time series context. We start with a detailed survey of distribution models allowing for underdispersion, discuss their properties and highlight possible disadvantages. After having identified two model families with attractive properties as well as only two model parameters, we combine these models with the INAR(1) model (integer-valued autoregressive), which is particularly well suited to obtain auotocorrelated counts with underdispersion. Properties of the resulting stationary INAR(1) models and approaches for parameter estimation are considered, as well as possible extensions to higher order autoregressions. Three real-data examples illustrate the application of the models in practice.  相似文献   

14.
We consider independent sampling from a two-component mixture distribution, where one component (called the parametric component) is from a known distributional family and the other component (called the non-parametric component) is unknown. This is a semi-parametric mixture distribution. We discretize the non-parametric component and estimate the parameters of this mixture model, namely the mixing proportion, the unknown parameters of the parametric component and the discretized non-parametric component. We define the maximum penalized likelihood (MPL) estimates of the mixture model parameters and then develop a generalized EM (GEM) iterative scheme to compute the MPL estimates. A simulation study and an example from biology are presented.  相似文献   

15.
Use of nonlinear models in analyzing time series data is becoming increasingly popular. This paper considers a broad class of nonlinear autoregressive models where the autoregressive part is additive and the terms are nonlinear functions of the past data. Also, the innovation distribution is supported on the non-negative reals and satisfies a tail regularity condition. The linear parameters of the autoregression are estimated using a linear programming recipe which yields much more accurate estimates than traditional methods such as conditional least squares. Limiting distribution of the linear programming estimators is obtained. Simulation studies validate the asymptotic results and reveal excellent small sample properties of the LPE estimator.  相似文献   

16.
Consider a setup where one-sided simultaneous confidence bounds for linear parametric functions are desired. Here we improve the Bohrer and Francis (1972) bounds for situations where apriori information on the parameters is available in form of some restrictions on the parameter space. Application is made essentially to ordered ANOVA models and simple-tree ANOVA models.  相似文献   

17.
18.
Change in the coefficients or the mean of the innovation of an INAR(p) process is a sign of disturbance that is important to detect. The proposed methods can test for change in any one of these quantities separately, or in any collection of them. They make both one-sided and two-sided tests possible, furthermore, they can be used to test against the “epidemic” alternative. The tests are based on a CUSUM process using CLS estimators of the parameters. Under the one-sided and two-sided alternatives, consistency of the tests is proved and the properties of the change-point estimator are also explored.  相似文献   

19.
The first-order integer-valued autoregressive (INAR(1)) process with Poisson marginal distributions is considered. It is shown that the sample autocovariance function of the model is asymptotically normally distributed. We derive asymptotic distribution of Yule-Walker type estimators of parameters. It turns out that our Yule-Walker type estimators are better than the conditional least squares estimators proposed by Klimko and Nelson (1978) and Al-Osh and Alzaid (1987). also, we study the relationship between the model andM/M/∞ queueing system.  相似文献   

20.
Processes of serially dependent Poisson counts are commonly observed in real-world applications and can often be modeled by the first-order integer-valued autoregressive (INAR) model. For detecting positive shifts in the mean of a Poisson INAR(1) process, we propose the one-sided s exponentially weighted moving average (EWMA) control chart, which is based on a new type of rounding operation. The s-EWMA chart allows computing average run length (ARLs) exactly and efficiently with a Markov chain approach. Using an implementation of this procedure for ARL computation, the s-EWMA chart is easily designed, which is demonstrated with a real-data example. Based on an extensive study of ARLs, the out-of-control performance of the chart is analyzed and compared with that of a c chart and a one-sided cumulative sum (CUSUM) chart. We also investigate the robustness of the chart against departures from the assumed Poisson marginal distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号