首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Summary.  A fundamental issue in applied multivariate extreme value analysis is modelling dependence within joint tail regions. The primary focus of this work is to extend the classical pseudopolar treatment of multivariate extremes to develop an asymptotically motivated representation of extremal dependence that also encompasses asymptotic independence. Starting with the usual mild bivariate regular variation assumptions that underpin the coefficient of tail dependence as a measure of extremal dependence, our main result is a characterization of the limiting structure of the joint survivor function in terms of an essentially arbitrary non-negative measure that must satisfy some mild constraints. We then construct parametric models from this new class and study in detail one example that accommodates asymptotic dependence, asymptotic independence and asymmetry within a straightforward parsimonious parameterization. We provide a fast simulation algorithm for this example and detail likelihood-based inference including tests for asymptotic dependence and symmetry which are useful for submodel selection. We illustrate this model by application to both simulated and real data. In contrast with the classical multivariate extreme value approach, which concentrates on the limiting distribution of normalized componentwise maxima, our framework focuses directly on the structure of the limiting joint survivor function and provides significant extensions of both the theoretical and the practical tools that are available for joint tail modelling.  相似文献   

2.
This article presents flexible new models for the dependence structure, or copula, of economic variables based on a latent factor structure. The proposed models are particularly attractive for relatively high-dimensional applications, involving 50 or more variables, and can be combined with semiparametric marginal distributions to obtain flexible multivariate distributions. Factor copulas generally lack a closed-form density, but we obtain analytical results for the implied tail dependence using extreme value theory, and we verify that simulation-based estimation using rank statistics is reliable even in high dimensions. We consider “scree” plots to aid the choice of the number of factors in the model. The model is applied to daily returns on all 100 constituents of the S&P 100 index, and we find significant evidence of tail dependence, heterogeneous dependence, and asymmetric dependence, with dependence being stronger in crashes than in booms. We also show that factor copula models provide superior estimates of some measures of systemic risk. Supplementary materials for this article are available online.  相似文献   

3.
Heavy tail probability distributions are important in many scientific disciplines such as hydrology, geology, and physics and therefore feature heavily in statistical practice. Rather than specifying a family of heavy-tailed distributions for a given application, it is more common to use a nonparametric approach, where the distributions are classified according to the tail behavior. Through the use of the logarithm of Parzen's density-quantile function, this work proposes a consistent, flexible estimator of the tail exponent. The approach we develop is based on a Fourier series estimator and allows for separate estimates of the left and right tail exponents. The theoretical properties for the tail exponent estimator are determined, and we also provide some results of independent interest that may be used to establish weak convergence of stochastic processes. We assess the practical performance of the method by exploring its finite sample properties in simulation studies. The overall performance is competitive with classical tail index estimators, and, in contrast, with these our method obtains somewhat better results in the case of lighter heavy-tailed distributions.  相似文献   

4.
In practice, a financial or actuarial data set may be a skewed or heavy-tailed and this motivates us to study a class of distribution functions in risk management theory that provide more information about these characteristics resulting in a more accurate risk analysis. In this paper, we consider a multivariate tail conditional expectation (MTCE) for multivariate scale mixtures of skew-normal (SMSN) distributions. This class of distributions contains skewed distributions and some members of this class can be used to analyse heavy-tailed data sets. We also provide a closed form for TCE in a univariate skew-normal distribution framework. Numerical examples are also provided for illustration.  相似文献   

5.
We introduce new families of estimators for the Weibull-tail coefficient, obtained from a weighted sum of a power transformation of excesses over a high random threshold. Asymptotic normality of the estimators is proven for an intermediate sequence of upper order statistics, and under classical regularity conditions for L-statistics and a second-order condition on the tail behavior of the underlying distribution. The small sample performance of two specific examples of kernel functions is evaluated in a simulation study.  相似文献   

6.
ABSTRACT

We present a new estimator of extreme quantiles dedicated to Weibull tail distributions. This estimate is based on a consistent estimator of the Weibull tail coefficient. This parameter is defined as the regular variation coefficient of the inverse cumulative hazard function. We give conditions in order to obtain the weak consistency and the asymptotic distribution of the extreme quantiles estimator. Its asymptotic as well as its finite sample performances are compared to classical ones.  相似文献   

7.
In this paper, we deal with bias reduction techniques for heavy tails, trying to improve mainly upon the performance of classical high quantile estimators. High quantiles depend strongly on the tail index γγ, for which new classes of reduced-bias estimators have recently been introduced, where the second-order parameters in the bias are estimated at a level k1k1 of a larger order than the level k at which the tail index is estimated. Doing this, it was seen that the asymptotic variance of the new estimators could be kept equal to the one of the popular Hill estimators. In a similar way, we now introduce new classes of tail index and associated high quantile estimators, with an asymptotic mean squared error smaller than that of the classical ones for all k in a large class of heavy-tailed models. We derive their asymptotic distributional properties and compare them with those of alternative estimators. Next to that, an illustration of the finite sample behavior of the estimators is also provided through a Monte Carlo simulation study and the application to a set of real data in the field of insurance.  相似文献   

8.
High quantile estimation is of importance in risk management. For a heavy-tailed distribution, estimating a high quantile is done via estimating the tail index. Reducing the bias in a tail index estimator can be achieved by using either the same order or a larger order of number of the upper order statistics in comparison with the theoretical optimal one in the classical tail index estimator. For the second approach, one can either estimate all parameters simultaneously or estimate the first and second order parameters separately. Recently, the first method and the second method via external estimators for the second order parameter have been applied to reduce the bias in high quantile estimation. Theoretically, the second method obviously gives rise to a smaller order of asymptotic mean squared error than the first one. In this paper we study the second method with simultaneous estimation of all parameters for reducing bias in high quantile estimation.  相似文献   

9.
We introduce a general class of continuous univariate distributions with positive support obtained by transforming the class of two-piece distributions. We show that this class of distributions is very flexible, easy to implement, and contains members that can capture different tail behaviours and shapes, producing also a variety of hazard functions. The proposed distributions represent a flexible alternative to the classical choices such as the log-normal, Gamma, and Weibull distributions. We investigate empirically the inferential properties of the proposed models through an extensive simulation study. We present some applications using real data in the contexts of time-to-event and accelerated failure time models. In the second kind of applications, we explore the use of these models in the estimation of the distribution of the individual remaining life.  相似文献   

10.
Rui Fang  Chen Li 《Statistics》2018,52(2):458-478
This study deals with random variables equipped with Archimedean copulas and following scale proportional hazards (SPHs) or revered hazards models. We build the usual stochastic order both between minimums of two SPHs samples with Archimedean survival copulas and between maximums from two scale proportional reversed hazards (PRHs) samples with Archimedean copulas. The hazard rate order between minimums of independent SPHs samples and the reversed hazard rate order between maximums of independent scale PRHs samples are both derived. Also we have a discussion on the dispersive order between minimums from samples with a common Archimedean survival copula. The present results either generalize or improve some related ones in the recent literature.  相似文献   

11.
In this paper we address the problem of estimating a vector of regression parameters in the Weibull censored regression model. Our main objective is to provide natural adaptive estimators that significantly improve upon the classical procedures in the situation where some of the predictors may or may not be associated with the response. In the context of two competing Weibull censored regression models (full model and candidate submodel), we consider an adaptive shrinkage estimation strategy that shrinks the full model maximum likelihood estimate in the direction of the submodel maximum likelihood estimate. We develop the properties of these estimators using the notion of asymptotic distributional risk. The shrinkage estimators are shown to have higher efficiency than the classical estimators for a wide class of models. Further, we consider a LASSO type estimation strategy and compare the relative performance with the shrinkage estimators. Monte Carlo simulations reveal that when the true model is close to the candidate submodel, the shrinkage strategy performs better than the LASSO strategy when, and only when, there are many inactive predictors in the model. Shrinkage and LASSO strategies are applied to a real data set from Veteran's administration (VA) lung cancer study to illustrate the usefulness of the procedures in practice.  相似文献   

12.
On Smooth Statistical Tail Functionals   总被引:4,自引:0,他引:4  
Many estimators of the extreme value index of a distribution function F that are based on a certain number k n of largest order statistics can be represented as a statistical tail function al, that is a functional T applied to the empirical tail quantile function Q n. We study the asymptotic behaviour of such estimators with a scale and location invariant functional T under weak second order conditions on F . For that purpose first a new approximation of the empirical tail quantile function is established. As a consequence we obtain weak consistency and asymptotic normality of T ( Q n) if T is continuous and Hadamard differentiable, respectively, at the upper quantile function of a generalized Pareto distribution and k pn tends to infinity sufficiently slowly. Then we investigate the asymptotic variance and bias. In particular, those functionals T re characterized that lead to an estimator with minimal asymptotic variance. Finally, we introduce a method to construct estimators of the extreme value index with a made-to-order asymptotic behaviour  相似文献   

13.
We develop and study in the framework of Pareto-type distributions a class of nonparametric kernel estimators for the conditional second order tail parameter. The estimators are obtained by local estimation of the conditional second order parameter using a moving window approach. Asymptotic normality of the proposed class of kernel estimators is proven under some suitable conditions on the kernel function and the conditional tail quantile function. The nonparametric estimators for the second order parameter are subsequently used to obtain a class of bias-corrected kernel estimators for the conditional tail index. In particular it is shown how for a given kernel function one obtains a bias-corrected kernel function, and that replacing the second order parameter in the latter with a consistent estimator does not change the limiting distribution of the bias-corrected estimator for the conditional tail index. The finite sample behavior of some specific estimators is illustrated with a simulation experiment. The developed methodology is also illustrated on fire insurance claim data.  相似文献   

14.
In this paper, we restrict attention to the problem of subset selection of normal populations. The approaches and results of some previous comparison studies of subset selection procedures are discussed briefly. And then the result of a new Monte Carlo study comparing the performance of two classical procedures and the Bayes procedure is presented.  相似文献   

15.
This study develops a methodology for a copula-based weather index insurance design. Because the copula approach is better suited for modeling tail dependence than the standard linear correlation approach, its use may increase the effectiveness of weather insurance contracts designed to provide protection against extreme weather events. In our study, we employ three selected Archimedean copulas to capture the left-tail dependence in the joint distribution of the farm yield and a specific weather index. A hierarchical Bayesian model is applied to obtain consistent estimates of tail dependence using relatively short time series. Our empirical results for 47 large grain-producing farms from Kazakhstan indicate that, given the choice of an appropriate weather index to signal catastrophic events, such as a severe drought, copula-based weather insurance contracts may provide significantly higher risk reductions than regression-based indemnification schemes.  相似文献   

16.
In this note, we consider the classical insurance risk model with heavy-tailed claim distributions. By using the Pollaczek–Khinchin Formula, we provide some sensitivity analysis on the ruin probability.  相似文献   

17.
Estimation of the Pareto tail index from extreme order statistics is an important problem in many settings. The upper tail of the distribution, where data are sparse, is typically fitted with a model, such as the Pareto model, from which quantities such as probabilities associated with extreme events are deduced. The success of this procedure relies heavily not only on the choice of the estimator for the Pareto tail index but also on the procedure used to determine the number k of extreme order statistics that are used for the estimation. The authors develop a robust prediction error criterion for choosing k and estimating the Pareto index. A Monte Carlo study shows the good performance of the new estimator and the analysis of real data sets illustrates that a robust procedure for selection, and not just for estimation, is needed.  相似文献   

18.
Abstract. We introduce and study a class of weighted functional estimators for the coefficient of tail dependence in bivariate extreme value statistics. Asymptotic normality of these estimators is established under a second‐order condition on the joint tail behaviour, some conditions on the weight function and for appropriately chosen sequences of intermediate order statistics. Asymptotically unbiased estimators are constructed by judiciously chosen linear combinations of weighted functional estimators, and variance optimality within this class of asymptotically unbiased estimators is discussed. The finite sample performance of some specific examples from our class of estimators and some alternatives from the recent literature are evaluated with a small simulation experiment.  相似文献   

19.
In this paper, we introduce a new risk measure, the so‐called conditional tail moment. It is defined as the moment of order a ≥ 0 of the loss distribution above the upper α‐quantile where α ∈ (0,1). Estimating the conditional tail moment permits us to estimate all risk measures based on conditional moments such as conditional tail expectation, conditional value at risk or conditional tail variance. Here, we focus on the estimation of these risk measures in case of extreme losses (where α ↓0 is no longer fixed). It is moreover assumed that the loss distribution is heavy tailed and depends on a covariate. The estimation method thus combines non‐parametric kernel methods with extreme‐value statistics. The asymptotic distribution of the estimators is established, and their finite‐sample behaviour is illustrated both on simulated data and on a real data set of daily rainfalls.  相似文献   

20.
We use bias-reduced estimators of high quantiles of heavy-tailed distributions, to introduce a new estimator for the mean in the case of infinite second moment. The asymptotic normality of the proposed estimator is established and checked in a simulation study, by four of the most popular goodness-of-fit tests. The accuracy of the resulting confidence intervals is evaluated as well. We also investigate the finite sample behavior and compare our estimator with some versions of Peng's estimator of the mean (namely those based on Hill, t-Hill and Huisman et al. extreme value index estimators). Moreover, we discuss the robustness of the tail index estimators used in this paper. Finally, our estimation procedure is applied to the well-known Danish fire insurance claims data set, to provide confidence bounds for the means of weekly and monthly maximum losses over a period of 10 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号