共查询到20条相似文献,搜索用时 0 毫秒
1.
M. Rauf Ahmad 《统计学通讯:理论与方法》2017,46(8):3738-3753
A test for homogeneity of g ? 2 covariance matrices is presented when the dimension, p, may exceed the sample size, ni, i = 1, …, g, and the populations may not be normal. Under some mild assumptions on covariance matrices, the asymptotic distribution of the test is shown to be normal when ni, p → ∞. Under the null hypothesis, the test is extended for common covariance matrix to be of a specified structure, including sphericity. Theory of U-statistics is employed in constructing the tests and deriving their limits. Simulations are used to show the accuracy of tests. 相似文献
2.
3.
4.
Hao Wang Baisen Liu Ning-Zhong Shi Shurong Zheng 《Journal of Statistical Computation and Simulation》2018,88(13):2600-2611
Two new statistics are proposed for testing the identity of high-dimensional covariance matrix. Applying the large dimensional random matrix theory, we study the asymptotic distributions of our proposed statistics under the situation that the dimension p and the sample size n tend to infinity proportionally. The proposed tests can accommodate the situation that the data dimension is much larger than the sample size, and the situation that the population distribution is non-Gaussian. The numerical studies demonstrate that the proposed tests have good performance on the empirical powers for a wide range of dimensions and sample sizes. 相似文献
5.
Kai Xu 《Journal of Statistical Computation and Simulation》2017,87(16):3208-3224
Under non-normality, this article is concerned with testing diagonality of high-dimensional covariance matrix, which is more practical than testing sphericity and identity in high-dimensional setting. The existing testing procedure for diagonality is not robust against either the data dimension or the data distribution, producing tests with distorted type I error rates much larger than nominal levels. This is mainly due to bias from estimating some functions of high-dimensional covariance matrix under non-normality. Compared to the sphericity and identity hypotheses, the asymptotic property of the diagonality hypothesis would be more involved and we should be more careful to deal with bias. We develop a correction that makes the existing test statistic robust against both the data dimension and the data distribution. We show that the proposed test statistic is asymptotically normal without the normality assumption and without specifying an explicit relationship between the dimension p and the sample size n. Simulations show that it has good size and power for a wide range of settings. 相似文献
6.
We explore the performance accuracy of the linear and quadratic classifiers for high-dimensional higher-order data, assuming that the class conditional distributions are multivariate normal with locally doubly exchangeable covariance structure. We derive a two-stage procedure for estimating the covariance matrix: at the first stage, the Lasso-based structure learning is applied to sparsifying the block components within the covariance matrix. At the second stage, the maximum-likelihood estimators of all block-wise parameters are derived assuming the doubly exchangeable within block covariance structure and a Kronecker product structured mean vector. We also study the effect of the block size on the classification performance in the high-dimensional setting and derive a class of asymptotically equivalent block structure approximations, in a sense that the choice of the block size is asymptotically negligible. 相似文献
7.
Statistical inferences in high-dimensional precision matrices are equally important as statistical inferences in high-dimensional covariance matrices. In the literature, much attention has been paid to the latter, and significant advances have been achieved, especially in estimation and test of the banded structure. This paper proposes a new test for testing banded structures of precision matrices without assuming any specific parametric distribution. The test is adapted to the large p small n problems in which we derive the asymptotic distribution under the null hypothesis of bandedness. Simulation results show that the proposed test performs well with finite sample sizes. A real data application is realised to a phone call centre data. 相似文献
8.
In this paper, we propose a new test statistic for testing the equality of high-dimensional covariance matrices for multiple populations. The proposed test statistic generalizes the test of the equality of two population covariance matrices proposed by Li and Chen (2012). 相似文献
9.
10.
In this paper, we propose a novel robust principal component analysis (PCA) for high-dimensional data in the presence of various heterogeneities, in particular strong tailing and outliers. A transformation motivated by the characteristic function is constructed to improve the robustness of the classical PCA. The suggested method has the distinct advantage of dealing with heavy-tail-distributed data, whose covariances may be non-existent (positively infinite, for instance), in addition to the usual outliers. The proposed approach is also a case of kernel principal component analysis (KPCA) and employs the robust and non-linear properties via a bounded and non-linear kernel function. The merits of the new method are illustrated by some statistical properties, including the upper bound of the excess error and the behaviour of the large eigenvalues under a spiked covariance model. Additionally, using a variety of simulations, we demonstrate the benefits of our approach over the classical PCA. Finally, using data on protein expression in mice of various genotypes in a biological study, we apply the novel robust PCA to categorise the mice and find that our approach is more effective at identifying abnormal mice than the classical PCA. 相似文献
11.
In this article, we consider a robust method of estimating a realized covariance matrix calculated as the sum of cross products of intraday high-frequency returns. According to recent articles in financial econometrics, the realized covariance matrix is essentially contaminated with market microstructure noise. Although techniques for removing noise from the matrix have been studied since the early 2000s, they have primarily investigated a low-dimensional covariance matrix with statistically significant sample sizes. We focus on noise-robust covariance estimation under converse circumstances, that is, a high-dimensional covariance matrix possibly with a small sample size. For the estimation, we utilize a statistical hypothesis test based on the characteristic that the largest eigenvalue of the covariance matrix asymptotically follows a Tracy–Widom distribution. The null hypothesis assumes that log returns are not pure noises. If a sample eigenvalue is larger than the relevant critical value, then we fail to reject the null hypothesis. The simulation results show that the estimator studied here performs better than others as measured by mean squared error. The empirical analysis shows that our proposed estimator can be adopted to forecast future covariance matrices using real data. 相似文献
12.
Jin Hyun Nam 《统计学通讯:模拟与计算》2017,46(3):1796-1807
Among many classification methods, linear discriminant analysis (LDA) is a favored tool due to its simplicity, robustness, and predictive accuracy but when the number of genes is larger than the number of observations, it cannot be applied directly because the within-class covariance matrix is singular. Also, diagonal LDA (DLDA) is a simpler model compared to LDA and has better performance in some cases. However, in reality, DLDA requires a strong assumption based on mutual independence. In this article, we propose the modified LDA (MLDA). MLDA is based on independence, but uses the information that has an effect on classification performance with the dependence structure. We suggest two approaches. One is the case of using gene rank. The other involves no use of gene rank. We found that MLDA has better performance than LDA, DLDA, or K-nearest neighborhood and is comparable with support vector machines in real data analysis and the simulation study. 相似文献
13.
14.
Peter M. Heffernan 《Journal of the Royal Statistical Society. Series B, Statistical methodology》1997,59(4):861-863
We obtain an estimator of the r th central moment of a distribution, which is unbiased for all distributions for which the first r moments exist. We do this by finding the kernel which allows the r th central moment to be written as a regular statistical functional. The U-statistic associated with this kernel is the unique symmetric unbiased estimator of the r th central moment, and, for each distribution, it has minimum variance among all estimators which are unbiased for all these distributions. 相似文献
15.
AbstractCovariance estimation and selection for multivariate datasets in a high-dimensional regime is a fundamental problem in modern statistics. Gaussian graphical models are a popular class of models used for this purpose. Current Bayesian methods for inverse covariance matrix estimation under Gaussian graphical models require the underlying graph and hence the ordering of variables to be known. However, in practice, such information on the true underlying model is often unavailable. We therefore propose a novel permutation-based Bayesian approach to tackle the unknown variable ordering issue. In particular, we utilize multiple maximum a posteriori estimates under the DAG-Wishart prior for each permutation, and subsequently construct the final estimate of the inverse covariance matrix. The proposed estimator has smaller variability and yields order-invariant property. We establish posterior convergence rates under mild assumptions and illustrate that our method outperforms existing approaches in estimating the inverse covariance matrices via simulation studies. 相似文献
16.
《Journal of Statistical Computation and Simulation》2012,82(16):3135-3140
ABSTRACTThis paper discusses the problem of testing the complete independence of random variables when the dimension of observations can be much larger than the sample size. It is reported that two typical tests based on, respectively, the biggest off-diagonal entry and the largest eigenvalue of the sample correlation matrix lose their control of type I error in such high-dimensional scenarios, and exhibit distinct behaviours in type II error under different types of alternative hypothesis. Given these facts, we propose a permutation test procedure by synthesizing these two extreme statistics. Simulation results show that for finite dimension and sample size the proposed test outperforms the existing methods in various cases. 相似文献
17.
Abstract. A U -statistic is not easy to apply or cannot be applied in hypothesis testing when it is degenerate or has an indeterminate degeneracy under the null hypothesis. A class of two-stage U -statistics (TU-statistics) is proposed to remedy these drawbacks. Both the asymptotic distributions under the null and the alternative of TU-statistics are shown to have simple forms. When the degeneracy is indeterminate, the Pitman asymptotic relative efficiency of a TU-statistic dominates that of the incomplete U -statistics. If the kernel is degenerate under the null hypothesis but non-degenerate under the alternative, a TU-statistic is proved to be more powerful than its corresponding U -statistic. Applications to testing independence of paired angles in ecology and marine biology are given. Finally, a simulation study shows that a TU-statistic is more powerful than its corresponding incomplete U -statistic in almost all cases under two settings. 相似文献
18.
The rate of convergence in the central limit theorem and in the random central limit theorem for some functions of U-statistics are established. The theorems refer to the asymptotic behaviour of the sequence {g(Un),n≥1}, where g belongs to the class
of all differentiable functions g such that g′εL(δ) and Un is a U-statistics. 相似文献
19.
《Journal of Statistical Computation and Simulation》2012,82(10):1233-1246
Using a new approach based on Meijer G-functions and computer simulation, we numerically compute the exact null distribution of the modified-likelihood ratio statistic used to test the hypothesis that several covariances matrices of normal distributions are equal. Small samples of different sizes are considered, and for the case of two matrices, we introduce a new test based on determinants, with the null distribution of its criterion also fully computable. Comparisons with published results show the accuracy of our approach, which is proved to be more flexible and adaptable to different cases. 相似文献
20.
We consider m×m covariance matrices, Σ1 and Σ2, which satisfy Σ2-Σ1=Δ, where Δ has a specified rank. Maximum likelihood estimators of Σ1 and Σ2 are obtained when sample covariance matrices having Wishart distributions are available and rank(Δ) is known. The likelihood ratio statistic for a test about the value of rank(Δ) is also given and some properties of its null distribution are obtained. The methods developed in this paper are illustrated through an example. 相似文献