首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Integrated Nested Laplace Approximation (INLA) has established itself as a widely used method for approximate inference on Bayesian hierarchical models which can be represented as a latent Gaussian model (LGM). INLA is based on producing an accurate approximation to the posterior marginal distributions of the parameters in the model and some other quantities of interest by using repeated approximations to intermediate distributions and integrals that appear in the computation of the posterior marginals. INLA focuses on models whose latent effects are a Gaussian Markov random field. For this reason, we have explored alternative ways of expanding the number of possible models that can be fitted using the INLA methodology. In this paper, we present a novel approach that combines INLA and Markov chain Monte Carlo (MCMC). The aim is to consider a wider range of models that can be fitted with INLA only when some of the parameters of the model have been fixed. We show how new values of these parameters can be drawn from their posterior by using conditional models fitted with INLA and standard MCMC algorithms, such as Metropolis–Hastings. Hence, this will extend the use of INLA to fit models that can be expressed as a conditional LGM. Also, this new approach can be used to build simpler MCMC samplers for complex models as it allows sampling only on a limited number of parameters in the model. We will demonstrate how our approach can extend the class of models that could benefit from INLA, and how the R-INLA package will ease its implementation. We will go through simple examples of this new approach before we discuss more advanced applications with datasets taken from the relevant literature. In particular, INLA within MCMC will be used to fit models with Laplace priors in a Bayesian Lasso model, imputation of missing covariates in linear models, fitting spatial econometrics models with complex nonlinear terms in the linear predictor and classification of data with mixture models. Furthermore, in some of the examples we could exploit INLA within MCMC to make joint inference on an ensemble of model parameters.  相似文献   

2.
We investigate two options for performing Bayesian inference on spatial log-Gaussian Cox processes assuming a spatially continuous latent field: Markov chain Monte Carlo (MCMC) and the integrated nested Laplace approximation (INLA). We first describe the device of approximating a spatially continuous Gaussian field by a Gaussian Markov random field on a discrete lattice, and present a simulation study showing that, with careful choice of parameter values, small neighbourhood sizes can give excellent approximations. We then introduce the spatial log-Gaussian Cox process and describe MCMC and INLA methods for spatial prediction within this model class. We report the results of a simulation study in which we compare the Metropolis-adjusted Langevin Algorithm (MALA) and the technique of approximating the continuous latent field by a discrete one, followed by approximate Bayesian inference via INLA over a selection of 18 simulated scenarios. The results question the notion that the latter technique is both significantly faster and more robust than MCMC in this setting; 100,000 iterations of the MALA algorithm running in 20 min on a desktop PC delivered greater predictive accuracy than the default INLA strategy, which ran in 4 min and gave comparative performance to the full Laplace approximation which ran in 39 min.  相似文献   

3.
Fitting cross-classified multilevel models with binary response is challenging. In this setting a promising method is Bayesian inference through Integrated Nested Laplace Approximations (INLA), which performs well in several latent variable models. We devise a systematic simulation study to assess the performance of INLA with cross-classified binary data under different scenarios defined by the magnitude of the variances of the random effects, the number of observations, the number of clusters, and the degree of cross-classification. In the simulations INLA is systematically compared with the popular method of Maximum Likelihood via Laplace Approximation. By an application to the classical salamander mating data, we compare INLA with the best performing methods. Given the computational speed and the generally good performance, INLA turns out to be a valuable method for fitting logistic cross-classified models.  相似文献   

4.
Hidden Markov random field models provide an appealing representation of images and other spatial problems. The drawback is that inference is not straightforward for these models as the normalisation constant for the likelihood is generally intractable except for very small observation sets. Variational methods are an emerging tool for Bayesian inference and they have already been successfully applied in other contexts. Focusing on the particular case of a hidden Potts model with Gaussian noise, we show how variational Bayesian methods can be applied to hidden Markov random field inference. To tackle the obstacle of the intractable normalising constant for the likelihood, we explore alternative estimation approaches for incorporation into the variational Bayes algorithm. We consider a pseudo-likelihood approach as well as the more recent reduced dependence approximation of the normalisation constant. To illustrate the effectiveness of these approaches we present empirical results from the analysis of simulated datasets. We also analyse a real dataset and compare results with those of previous analyses as well as those obtained from the recently developed auxiliary variable MCMC method and the recursive MCMC method. Our results show that the variational Bayesian analyses can be carried out much faster than the MCMC analyses and produce good estimates of model parameters. We also found that the reduced dependence approximation of the normalisation constant outperformed the pseudo-likelihood approximation in our analysis of real and synthetic datasets.  相似文献   

5.
When the results of biological experiments are tested for a possible difference between treatment and control groups, the inference is only valid if based upon a model that fits the experimental results satisfactorily. In dominant-lethal testing, foetal death has previously been assumed to follow a variety of models, including a Poisson, Binomial, Beta-binomial and various mixture models. However, discriminating between models has always been a particularly difficult problem. In this paper, we consider the data from 6 separate dominant-lethal assay experiments and discriminate between the competing models which could be used to describe them. We adopt a Bayesian approach and illustrate how a variety of different models may be considered, using Markov chain Monte Carlo (MCMC) simulation techniques and comparing the results with the corresponding maximum likelihood analyses. We present an auxiliary variable method for determining the probability that any particular data cell is assigned to a given component in a mixture and we illustrate the value of this approach. Finally, we show how the Bayesian approach provides a natural and unique perspective on the model selection problem via reversible jump MCMC and illustrate how probabilities associated with each of the different models may be calculated for each data set. In terms of estimation we show how, by averaging over the different models, we obtain reliable and robust inference for any statistic of interest.  相似文献   

6.
In this paper, we discuss the inference problem about the Box-Cox transformation model when one faces left-truncated and right-censored data, which often occur in studies, for example, involving the cross-sectional sampling scheme. It is well-known that the Box-Cox transformation model includes many commonly used models as special cases such as the proportional hazards model and the additive hazards model. For inference, a Bayesian estimation approach is proposed and in the method, the piecewise function is used to approximate the baseline hazards function. Also the conditional marginal prior, whose marginal part is free of any constraints, is employed to deal with many computational challenges caused by the constraints on the parameters, and a MCMC sampling procedure is developed. A simulation study is conducted to assess the finite sample performance of the proposed method and indicates that it works well for practical situations. We apply the approach to a set of data arising from a retirement center.  相似文献   

7.
Abstract. Deterministic Bayesian inference for latent Gaussian models has recently become available using integrated nested Laplace approximations (INLA). Applying the INLA‐methodology, marginal estimates for elements of the latent field can be computed efficiently, providing relevant summary statistics like posterior means, variances and pointwise credible intervals. In this article, we extend the use of INLA to joint inference and present an algorithm to derive analytical simultaneous credible bands for subsets of the latent field. The algorithm is based on approximating the joint distribution of the subsets by multivariate Gaussian mixtures. Additionally, we present a saddlepoint approximation to compute Bayesian contour probabilities, representing the posterior support of fixed parameter vectors of interest. We perform a simulation study and apply the given methods to two real examples.  相似文献   

8.
ABSTRACT

Clustered observations such as longitudinal data are often analysed with generalized linear mixed models (GLMM). Approximate Bayesian inference for GLMMs with normally distributed random effects can be done using integrated nested Laplace approximations (INLA), which is in general known to yield accurate results. However, INLA is known to be less accurate for GLMMs with binary response. For longitudinal binary response data it is common that patients do not change their health state during the study period. In this case the grouping covariate perfectly predicts a subset of the response, which implies a monotone likelihood with diverging maximum likelihood (ML) estimates for cluster-specific parameters. This is known as quasi-complete separation. In this paper we demonstrate, based on longitudinal data from a randomized clinical trial and two simulations, that the accuracy of INLA decreases with increasing degree of cluster-specific quasi-complete separation. Comparing parameter estimates by INLA, Markov chain Monte Carlo sampling and ML shows that INLA increasingly deviates from the other methods in such a scenario.  相似文献   

9.
Longitudinal data are commonly modeled with the normal mixed-effects models. Most modeling methods are based on traditional mean regression, which results in non robust estimation when suffering extreme values or outliers. Median regression is also not a best choice to estimation especially for non normal errors. Compared to conventional modeling methods, composite quantile regression can provide robust estimation results even for non normal errors. In this paper, based on a so-called pseudo composite asymmetric Laplace distribution (PCALD), we develop a Bayesian treatment to composite quantile regression for mixed-effects models. Furthermore, with the location-scale mixture representation of the PCALD, we establish a Bayesian hierarchical model and achieve the posterior inference of all unknown parameters and latent variables using Markov Chain Monte Carlo (MCMC) method. Finally, this newly developed procedure is illustrated by some Monte Carlo simulations and a case analysis of HIV/AIDS clinical data set.  相似文献   

10.
Approximate Bayesian Inference for Survival Models   总被引:1,自引:0,他引:1  
Abstract. Bayesian analysis of time‐to‐event data, usually called survival analysis, has received increasing attention in the last years. In Cox‐type models it allows to use information from the full likelihood instead of from a partial likelihood, so that the baseline hazard function and the model parameters can be jointly estimated. In general, Bayesian methods permit a full and exact posterior inference for any parameter or predictive quantity of interest. On the other side, Bayesian inference often relies on Markov chain Monte Carlo (MCMC) techniques which, from the user point of view, may appear slow at delivering answers. In this article, we show how a new inferential tool named integrated nested Laplace approximations can be adapted and applied to many survival models making Bayesian analysis both fast and accurate without having to rely on MCMC‐based inference.  相似文献   

11.
To assess the reliability of highly reliable products that have two or more performance characteristics (PCs) in an accurate manner, relations between the PCs should be taken duly into account. If they are not independent, it would then become important to describe the dependence of the PCs. For many products, the constant-stress degradation test cannot provide sufficient data for reliability evaluation and for this reason, accelerated degradation test is usually performed. In this article, we assume that a product has two PCs and that the PCs are governed by a Wiener process with a time scale transformation, and the relationship between the PCs is described by the Frank copula function. The copula parameter is dependent on stress and assumed to be a function of stress level that can be described by a logistic function. Based on these assumptions, a bivariate constant-stress accelerated degradation model is proposed here. The direct likelihood estimation of parameters of such a model becomes analytically intractable, and so the Bayesian Markov chain Monte Carlo (MCMC) method is developed here for this model for obtaining the maximum likelihood estimates (MLEs) efficiently. For an illustration of the proposed model and the method of inference, a simulated example is presented along with the associated computational results.  相似文献   

12.
On Block Updating in Markov Random Field Models for Disease Mapping   总被引:3,自引:0,他引:3  
Gaussian Markov random field (GMRF) models are commonly used to model spatial correlation in disease mapping applications. For Bayesian inference by MCMC, so far mainly single-site updating algorithms have been considered. However, convergence and mixing properties of such algorithms can be extremely poor due to strong dependencies of parameters in the posterior distribution. In this paper, we propose various block sampling algorithms in order to improve the MCMC performance. The methodology is rather general, allows for non-standard full conditionals, and can be applied in a modular fashion in a large number of different scenarios. For illustration we consider three different applications: two formulations for spatial modelling of a single disease (with and without additional unstructured parameters respectively), and one formulation for the joint analysis of two diseases. The results indicate that the largest benefits are obtained if parameters and the corresponding hyperparameter are updated jointly in one large block. Implementation of such block algorithms is relatively easy using methods for fast sampling of Gaussian Markov random fields ( Rue, 2001 ). By comparison, Monte Carlo estimates based on single-site updating can be rather misleading, even for very long runs. Our results may have wider relevance for efficient MCMC simulation in hierarchical models with Markov random field components.  相似文献   

13.
In the frailty Cox model, frequentist approaches often present problems of numerical resolution, convergence, and variance calculation. The Bayesian approach offers an alternative. The goal of this study was to compare, using real (calf gastroenteritis) and simulated data, the results obtained with the MCMC method used in the Bayesian approach versus two frequentist approaches: the Newton–Raphson algorithm to solve a penalized likelihood and the EM algorithm. The results obtained showed that when the number of groups in the population decreases, the Bayesian approach gives a less biased estimation of the frailty variance and of the group fixed effect than the frequentist approaches.  相似文献   

14.
We consider an adaptive importance sampling approach to estimating the marginal likelihood, a quantity that is fundamental in Bayesian model comparison and Bayesian model averaging. This approach is motivated by the difficulty of obtaining an accurate estimate through existing algorithms that use Markov chain Monte Carlo (MCMC) draws, where the draws are typically costly to obtain and highly correlated in high-dimensional settings. In contrast, we use the cross-entropy (CE) method, a versatile adaptive Monte Carlo algorithm originally developed for rare-event simulation. The main advantage of the importance sampling approach is that random samples can be obtained from some convenient density with little additional costs. As we are generating independent draws instead of correlated MCMC draws, the increase in simulation effort is much smaller should one wish to reduce the numerical standard error of the estimator. Moreover, the importance density derived via the CE method is grounded in information theory, and therefore, is in a well-defined sense optimal. We demonstrate the utility of the proposed approach by two empirical applications involving women's labor market participation and U.S. macroeconomic time series. In both applications, the proposed CE method compares favorably to existing estimators.  相似文献   

15.
Models for geostatistical data introduce spatial dependence in the covariance matrix of location-specific random effects. This is usually defined to be a parametric function of the distances between locations. Bayesian formulations of such models overcome asymptotic inference and estimation problems involved in maximum likelihood-based approaches and can be fitted using Markov chain Monte Carlo (MCMC) simulation. The MCMC implementation, however, requires repeated inversions of the covariance matrix which makes the problem computationally intensive, especially for large number of locations. In the present work, we propose to convert the spatial covariance matrix to a sparse matrix and compare a number of numerical algorithms especially suited within the MCMC framework in order to accelerate large matrix inversion. The algorithms are assessed empirically on simulated datasets of different size and sparsity. We conclude that the band solver applied after ordering the distance matrix reduces the computational time in inverting covariance matrices substantially.  相似文献   

16.
Abstract. In this paper, we show how the construction of a trans‐dimensional equivalent of the Gibbs sampler can be used to obtain a powerful suite of adaptive algorithms suitable for trans‐dimensional MCMC samplers. These algorithms adapt at the local scale, optimizing performance at each iteration in contrast to the globally adaptive scheme proposed by others for the fixeddimensional problem. Our adaptive scheme ensures suitably high acceptance rates for MCMC and RJMCMC proposals without the need for (often prohibitively) time‐consuming pilot‐tuning exercises. We illustrate our methods using the problem of Bayesian model discrimination for the important class of autoregressive time series models and, through the use of a variety of prior and proposal structures, demonstrate their ability to provide powerful and effective adaptive sampling schemes.  相似文献   

17.
Abstract. We investigate simulation methodology for Bayesian inference in Lévy‐driven stochastic volatility (SV) models. Typically, Bayesian inference from such models is performed using Markov chain Monte Carlo (MCMC); this is often a challenging task. Sequential Monte Carlo (SMC) samplers are methods that can improve over MCMC; however, there are many user‐set parameters to specify. We develop a fully automated SMC algorithm, which substantially improves over the standard MCMC methods in the literature. To illustrate our methodology, we look at a model comprised of a Heston model with an independent, additive, variance gamma process in the returns equation. The driving gamma process can capture the stylized behaviour of many financial time series and a discretized version, fit in a Bayesian manner, has been found to be very useful for modelling equity data. We demonstrate that it is possible to draw exact inference, in the sense of no time‐discretization error, from the Bayesian SV model.  相似文献   

18.
In this work, we consider a hierarchical spatio-temporal model for particulate matter (PM) concentration in the North-Italian region Piemonte. The model involves a Gaussian Field (GF), affected by a measurement error, and a state process characterized by a first order autoregressive dynamic model and spatially correlated innovations. This kind of model is well discussed and widely used in the air quality literature thanks to its flexibility in modelling the effect of relevant covariates (i.e. meteorological and geographical variables) as well as time and space dependence. However, Bayesian inference—through Markov chain Monte Carlo (MCMC) techniques—can be a challenge due to convergence problems and heavy computational loads. In particular, the computational issue refers to the infeasibility of linear algebra operations involving the big dense covariance matrices which occur when large spatio-temporal datasets are present. The main goal of this work is to present an effective estimating and spatial prediction strategy for the considered spatio-temporal model. This proposal consists in representing a GF with Matérn covariance function as a Gaussian Markov Random Field (GMRF) through the Stochastic Partial Differential Equations (SPDE) approach. The main advantage of moving from a GF to a GMRF stems from the good computational properties that the latter enjoys. In fact, GMRFs are defined by sparse matrices that allow for computationally effective numerical methods. Moreover, when dealing with Bayesian inference for GMRFs, it is possible to adopt the Integrated Nested Laplace Approximation (INLA) algorithm as an alternative to MCMC methods giving rise to additional computational advantages. The implementation of the SPDE approach through the R-library INLA (www.r-inla.org) is illustrated with reference to the Piemonte PM data. In particular, providing the step-by-step R-code, we show how it is easy to get prediction and probability of exceedance maps in a reasonable computing time.  相似文献   

19.
In this article, we assess Bayesian estimation and prediction using integrated Laplace approximation (INLA) on a stochastic volatility (SV) model. This was performed through a Monte Carlo study with 1,000 simulated time series. To evaluate the estimation method, two criteria were considered: the bias and square root of the mean square error (smse). The criteria used for prediction are the one step ahead forecast of volatility and the one day Value at Risk (VaR). The main findings are that the INLA approximations are fairly accurate and relatively robust to the choice of prior distribution on the persistence parameter. Additionally, VaR estimates are computed and compared for three financial time series returns indexes.  相似文献   

20.
In the expectation–maximization (EM) algorithm for maximum likelihood estimation from incomplete data, Markov chain Monte Carlo (MCMC) methods have been used in change-point inference for a long time when the expectation step is intractable. However, the conventional MCMC algorithms tend to get trapped in local mode in simulating from the posterior distribution of change points. To overcome this problem, in this paper we propose a stochastic approximation Monte Carlo version of EM (SAMCEM), which is a combination of adaptive Markov chain Monte Carlo and EM utilizing a maximum likelihood method. SAMCEM is compared with the stochastic approximation version of EM and reversible jump Markov chain Monte Carlo version of EM on simulated and real datasets. The numerical results indicate that SAMCEM can outperform among the three methods by producing much more accurate parameter estimates and the ability to achieve change-point positions and estimates simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号