首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show that the definition of the θth sample quantile as the solution to a minimization problem introduced by Koenker and Bassett (Econometrica 46(1):33–50, 1978) can be easily extended to obtain an analogous definition for the θth sample quantity quantile widely investigated and applied in the Italian literature. The key point is the use of the first-moment distribution of the variable instead of its distribution function. By means of this definition we introduce a linear regression model for quantity quantiles and analyze some properties of the residuals. In Sect. 4 we show a brief application of the methodology proposed. This research was partially supported by Fondo d’Ateneo per la Ricerca anno 2005—Università degli Studi di Milano-Bicocca. The paper is the result of the common work of the authors; in particular M. Zenga has written Sects. 1 and 5 while P. Radaelli has written the remaining sections.  相似文献   

2.
In the ciassical regression model Yi=h(xi) + ? i, i=1,…,n, Cheng (1984) introduced linear combinations of regression quantiles as a new class of estimators for the unknown regression function h(x). The asymptotic properties studied in Cheng (1984) are reconsidered. We obtain a sharper scrong consistency rate and we improve on the conditions for asymptotic normality by proving a new result on the remainder term in the Bahadur representation for regression quantiles.  相似文献   

3.
Estimators for quantiles based on linear combinations of order statistics have been proposed by Harrell and Davis(1982) and kaigh and Lachenbruch (1982). Both estimators have been demonstrated to be at least as efficient for small sample point estimation as an ordinary sample quantile estimator based on one or two order statistics: Distribution-free confidence intervals for quantiles can be constructed using either of the two approaches. By means of a simulation study, these confidence intervals have been compared with several other methods of constructing confidence intervals for quantiles in small samples. For the median, the Kaigh and Lachenbruch method performed fairly well. For other quantiles, no method performed better than the method which uses pairs of order statistics.  相似文献   

4.
Although quantile regression estimators are robust against low leverage observations with atypically large responses (Koenker & Bassett 1978), they can be seriously affected by a few points that deviate from the majority of the sample covariates. This problem can be alleviated by downweighting observations with high leverage. Unfortunately, when the covariates are not elliptically distributed, Mahalanobis distances may not be able to correctly identify atypical points. In this paper the authors discuss the use of weights based on a new leverage measure constructed using Rosenblatt's multivariate transformation which is able to reflect nonelliptical structures in the covariate space. The resulting weighted estimators are consistent, asymptotically normal, and have a bounded influence function. In addition, the authors also discuss a selection criterion for choosing the downweighting scheme. They illustrate their approach with child growth data from Finland. Finally, their simulation studies suggest that this methodology has good finite‐sample properties.  相似文献   

5.
Gradient Boosting (GB) was introduced to address both classification and regression problems with great power. People have studied the boosting with L2 loss intensively both in theory and practice. However, the L2 loss is not proper for learning distributional functionals beyond the conditional mean such as conditional quantiles. There are huge amount of literatures studying conditional quantile prediction with various methods including machine learning techniques such like random forests and boosting. Simulation studies reveal that the weakness of random forests lies in predicting centre quantiles and that of GB lies in predicting extremes. Is there an algorithm that enjoys the advantages of both random forests and boosting so that it can perform well over all quantiles? In this article, we propose such a boosting algorithm called random GB which embraces the merits of both random forests and GB. Empirical results will be presented to support the superiority of this algorithm in predicting conditional quantiles.  相似文献   

6.
This paper proposes a consistent parametric test of Granger-causality in quantiles. Although the concept of Granger-causality is defined in terms of the conditional distribution, most articles have tested Granger-causality using conditional mean regression models in which the causal relations are linear. Rather than focusing on a single part of the conditional distribution, we develop a test that evaluates nonlinear causalities and possible causal relations in all conditional quantiles, which provides a sufficient condition for Granger-causality when all quantiles are considered. The proposed test statistic has correct asymptotic size, is consistent against fixed alternatives, and has power against Pitman deviations from the null hypothesis. As the proposed test statistic is asymptotically nonpivotal, we tabulate critical values via a subsampling approach. We present Monte Carlo evidence and an application considering the causal relation between the gold price, the USD/GBP exchange rate, and the oil price.  相似文献   

7.
Composite quantile regression (CQR) is motivated by the desire to have an estimator for linear regression models that avoids the breakdown of the least-squares estimator when the error variance is infinite, while having high relative efficiency even when the least-squares estimator is fully efficient. Here, we study two weighting schemes to further improve the efficiency of CQR, motivated by Jiang et al. [Oracle model selection for nonlinear models based on weighted composite quantile regression. Statist Sin. 2012;22:1479–1506]. In theory the two weighting schemes are asymptotically equivalent to each other and always result in more efficient estimators compared with CQR. Although the first weighting scheme is hard to implement, it sheds light on in what situations the improvement is expected to be large. A main contribution is to theoretically and empirically identify that standard CQR has good performance compared with weighted CQR only when the error density is logistic or close to logistic in shape, which was not noted in the literature.  相似文献   

8.
9.
Composite quantile regression models have been shown to be effective techniques in improving the prediction accuracy [H. Zou and M. Yuan, Composite quantile regression and the oracle model selection theory, Ann. Statist. 36 (2008), pp. 1108–1126; J. Bradic, J. Fan, and W. Wang, Penalized composite quasi-likelihood for ultrahighdimensional variable selection, J. R. Stat. Soc. Ser. B 73 (2011), pp. 325–349; Z. Zhao and Z. Xiao, Efficient regressions via optimally combining quantile information, Econometric Theory 30(06) (2014), pp. 1272–1314]. This paper studies composite Tobit quantile regression (TQReg) from a Bayesian perspective. A simple and efficient MCMC-based computation method is derived for posterior inference using a mixture of an exponential and a scaled normal distribution of the skewed Laplace distribution. The approach is illustrated via simulation studies and a real data set. Results show that combine information across different quantiles can provide a useful method in efficient statistical estimation. This is the first work to discuss composite TQReg from a Bayesian perspective.  相似文献   

10.
The check loss function is used to define quantile regression. In cross-validation, it is also employed as a validation function when the true distribution is unknown. However, our empirical study indicates that validation with the check loss often leads to overfitting the data. In this work, we suggest a modified or L2-adjusted check loss which rounds the sharp corner in the middle of check loss. This has the effect of guarding against overfitting to some extent. The adjustment is devised to shrink to zero as sample size grows. Through various simulation settings of linear and nonlinear regressions, the improvement due to modification of the check loss by quadratic adjustment is examined empirically.  相似文献   

11.
ABSTRACT

Value-at-Risk (VaR) is one of the best known and most heavily used measures of financial risk. In this paper, we introduce a non-iterative semiparametric model for VaR estimation called the single index quantile regression time series (SIQRTS) model. To test its performance, we give an application to four major US market indices: the S&P 500 Index, the Russell 2000 Index, the Dow Jones Industrial Average, and the NASDAQ Composite Index. Our results suggest that this method has a good finite sample performance and often outperforms a number of commonly used methods.  相似文献   

12.
This study examines estimation and inference based on quantile regression for parametric nonlinear models with an integrated time series covariate. We first derive the limiting distribution of the nonlinear quantile regression estimator and then consider testing for parameter restrictions, when the regression function is specified as an asymptotically homogeneous function. We also study linear-in-parameter regression models when the regression function is given by integrable regression functions as well as asymptotically homogeneous regression functions. We, furthermore, propose a fully modified estimator to reduce the bias in the original estimator under a certain set of conditions. Finally, simulation studies show that the estimators behave well, especially when the regression error term has a fat-tailed distribution.  相似文献   

13.
A new nonparametric quantile regression method based on the concept of optimal quantization was developed recently and was showed to provide estimators that often dominate their classical, kernel-type, competitors. In the present work, we extend this method to multiple-output regression problems. We show how quantization allows approximating population multiple-output regression quantiles based on halfspace depth. We prove that this approximation becomes arbitrarily accurate as the size of the quantization grid goes to infinity. We also derive a weak consistency result for a sample version of the proposed regression quantiles. Through simulations, we compare the performances of our estimators with (local constant and local bilinear) kernel competitors. The results reveal that the proposed quantization-based estimators, which are local constant in nature, outperform their kernel counterparts and even often dominate their local bilinear kernel competitors. The various approaches are also compared on artificial and real data.  相似文献   

14.
Quantile regression (QR) models have received a great deal of attention in both the theoretical and applied statistical literature. In this paper we propose support vector quantile regression (SVQR) with monotonicity restriction, which is easily obtained via the dual formulation of the optimization problem. We also provide the generalized approximate cross validation method for choosing the hyperparameters which affect the performance of the proposed SVQR. The experimental results for the synthetic and real data sets confirm the successful performance of the proposed model.  相似文献   

15.
16.
17.
Outer product of gradients (OPG) achieves dimension reduction via estimating the gradients of the regression function. In this paper, we propose two novel OPG estimators via local rank regression: the rank OPG estimator and the Walsh-average OPG estimator. Both proposals guard against a wide range of error distributions, and are safe alternatives to existing OPG estimators based on local linear regression or local L1 regression. The effectiveness of the new proposals are demonstrated via extensive numerical studies.  相似文献   

18.
Quantile regression (QR) proposed by Koenker and Bassett [Regression quantiles, Econometrica 46(1) (1978), pp. 33–50] is a statistical technique that estimates conditional quantiles. It has been widely studied and applied to economics. Meinshausen [Quantile regression forests, J. Mach. Learn. Res. 7 (2006), pp. 983–999] proposed quantile regression forests (QRF), a non-parametric way based on random forest. QRF performs well in terms of prediction accuracy, but it struggles with noisy data sets. This motivates us to propose a multi-step QR tree method using GUIDE (Generalized, Unbiased, Interaction Detection and Estimation) made by Loh [Regression trees with unbiased variable selection and interaction detection, Statist. Sinica 12 (2002), pp. 361–386]. Our simulation study shows that the multi-step QR tree performs better than a single tree or QRF especially when it deals with data sets having many irrelevant variables.  相似文献   

19.
The composite quantile regression (CQR) has been developed for the robust and efficient estimation of regression coefficients in a liner regression model. By employing the idea of the CQR, we propose a new regression method, called composite kernel quantile regression (CKQR), which uses the sum of multiple check functions as a loss in reproducing kernel Hilbert spaces for the robust estimation of a nonlinear regression function. The numerical results demonstrate the usefulness of the proposed CKQR in estimating both conditional nonlinear mean and quantile functions.  相似文献   

20.
Based on the Bayesian framework of utilizing a Gaussian prior for the univariate nonparametric link function and an asymmetric Laplace distribution (ALD) for the residuals, we develop a Bayesian treatment for the Tobit quantile single-index regression model (TQSIM). With the location-scale mixture representation of the ALD, the posterior inferences of the latent variables and other parameters are achieved via the Markov Chain Monte Carlo computation method. TQSIM broadens the scope of applicability of the Tobit models by accommodating nonlinearity in the data. The proposed method is illustrated by two simulation examples and a labour supply dataset.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号