首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Partial linear varying coefficient models are often used in real data analysis for a good balance between flexibility and parsimony. In this paper, we propose a robust adaptive model selection method based on the rank regression, which can do simultaneous coefficient estimation and three types of selections, i.e., varying and constant effects selection, relevant variable selection. The new method has superiority in robustness and efficiency by inheriting the advantage of the rank regression approach. Furthermore, consistency in the three types of selections and oracle property in estimation are established as well. Simulation studies also confirm our method.  相似文献   

2.
Jing Yang  Fang Lu  Hu Yang 《Statistics》2017,51(6):1179-1199
In this paper, we develop a new estimation procedure based on quantile regression for semiparametric partially linear varying-coefficient models. The proposed estimation approach is empirically shown to be much more efficient than the popular least squares estimation method for non-normal error distributions, and almost not lose any efficiency for normal errors. Asymptotic normalities of the proposed estimators for both the parametric and nonparametric parts are established. To achieve sparsity when there exist irrelevant variables in the model, two variable selection procedures based on adaptive penalty are developed to select important parametric covariates as well as significant nonparametric functions. Moreover, both these two variable selection procedures are demonstrated to enjoy the oracle property under some regularity conditions. Some Monte Carlo simulations are conducted to assess the finite sample performance of the proposed estimators, and a real-data example is used to illustrate the application of the proposed methods.  相似文献   

3.
It is well known that M-estimation is a widely used method for robust statistical inference and the varying coefficient models have been widely applied in many scientific areas. In this paper, we consider M-estimation and model identification of bivariate varying coefficient models for longitudinal data. We make use of bivariate tensor-product B-splines as an approximation of the function and consider M-type regression splines by minimizing the objective convex function. Mean and median regressions are included in this class. Moreover, with a double smoothly clipped absolute deviation (SCAD) penalization, we study the problem of simultaneous structure identification and estimation. Under approximate conditions, we show that the proposed procedure possesses the oracle property in the sense that it is as efficient as the estimator when the true model is known prior to statistical analysis. Simulation studies are carried out to demonstrate the methodological power of the proposed methods with finite samples. The proposed methodology is illustrated with an analysis of a real data example.  相似文献   

4.
Partially linear varying coefficient models (PLVCMs) with heteroscedasticity are considered in this article. Based on composite quantile regression, we develop a weighted composite quantile regression (WCQR) to estimate the non parametric varying coefficient functions and the parametric regression coefficients. The WCQR is augmented using a data-driven weighting scheme. Moreover, the asymptotic normality of proposed estimators for both the parametric and non parametric parts are studied explicitly. In addition, by comparing the asymptotic relative efficiency theoretically and numerically, WCQR method all outperforms the CQR method and some other estimate methods. To achieve sparsity with high-dimensional covariates, we develop a variable selection procedure to select significant parametric components for the PLVCM and prove the method possessing the oracle property. Both simulations and data analysis are conducted to illustrate the finite-sample performance of the proposed methods.  相似文献   

5.
In this paper, we consider the problem of variable selection for partially varying coefficient single-index model, and present a regularized variable selection procedure by combining basis function approximations with smoothly clipped absolute deviation penalty. The proposed procedure simultaneously selects significant variables in the single-index parametric components and the nonparametric coefficient function components. With appropriate selection of the tuning parameters, the consistency of the variable selection procedure and the oracle property of the estimators are established. Finite sample performance of the proposed method is illustrated by a simulation study and real data analysis.  相似文献   

6.
Abstract

In this article, we focus on the variable selection for semiparametric varying coefficient partially linear model with response missing at random. Variable selection is proposed based on modal regression, where the non parametric functions are approximated by B-spline basis. The proposed procedure uses SCAD penalty to realize variable selection of parametric and nonparametric components simultaneously. Furthermore, we establish the consistency, the sparse property and asymptotic normality of the resulting estimators. The penalty estimation parameters value of the proposed method is calculated by EM algorithm. Simulation studies are carried out to assess the finite sample performance of the proposed variable selection procedure.  相似文献   

7.
This paper is motivated from a neurophysiological study of muscle fatigue, in which biomedical researchers are interested in understanding the time-dependent relationships of handgrip force and electromyography measures. A varying coefficient model is appealing here to investigate the dynamic pattern in the longitudinal data. The response variable in the study is continuous but bounded on the standard unit interval (0, 1) over time, while the longitudinal covariates are contaminated with measurement errors. We propose a generalization of varying coefficient models for the longitudinal proportional data with errors-in-covariates. We describe two estimation methods with penalized splines, which are formalized under a Bayesian inferential perspective. The first method is an adaptation of the popular regression calibration approach. The second method is based on a joint likelihood under the hierarchical Bayesian model. A simulation study is conducted to evaluate the efficacy of the proposed methods under different scenarios. The analysis of the neurophysiological data is presented to demonstrate the use of the methods.  相似文献   

8.
Abstract

In this article, a new composite quantile regression estimation (CQR) approach is proposed for partially linear varying coefficient models (PLVCM) under composite quantile loss function with B-spline approximations. The major advantage of the proposed procedures over the existing ones is easy to implement using existing software, and it requires no specification of the error distributions. Under the regularity conditions, the consistency and asymptotic normality of the estimators are also derived. Finally, a simulation study and a real data application are undertaken to assess the finite sample performance of the proposed estimation procedure.  相似文献   

9.
A nonconcave penalized estimation method is proposed for partially linear models with longitudinal data when the number of parameters diverges with the sample size. The proposed procedure can simultaneously estimate the parameters and select the important variables. Under some regularity conditions, the rate of convergence and asymptotic normality of the resulting estimators are established. In addition, an iterative algorithm is proposed to implement the proposed estimators. To improve efficiency for regression coefficients, the estimation of the covariance function is integrated in the iterative algorithm. Simulation studies are carried out to demonstrate that the proposed method performs well, and a real data example is analysed to illustrate the proposed procedure.  相似文献   

10.
This paper focuses on robust estimation and variable selection for partially linear models. We combine the weighted least absolute deviation (WLAD) regression with the adaptive least absolute shrinkage and selection operator (LASSO) to achieve simultaneous robust estimation and variable selection for partially linear models. Compared with the LAD-LASSO method, the WLAD-LASSO method will resist to the heavy-tailed errors and outliers in the parametric components. In addition, we estimate the unknown smooth function by a robust local linear regression. Under some regular conditions, the theoretical properties of the proposed estimators are established. We further examine finite-sample performance of the proposed procedure by simulation studies and a real data example.  相似文献   

11.
Xing-Cai Zhou 《Statistics》2013,47(3):521-534
An inherent characteristic of longitudinal data is the dependence among the observations within the same subject. For exhibiting dependencies among the observations within the same subject, this paper considers a semiparametric partially linear regression model for longitudinal data based on martingale difference error's structure. We establish a strong consistency for the least squares estimator of a parametric component and the estimator of a non-parametric function under some mild conditions. A simulation study shows the performance of the proposed estimator in finite samples.  相似文献   

12.
In this paper, we study the problem of estimation and variable selection for generalised partially linear single-index models based on quasi-likelihood, extending existing studies on variable selection for partially linear single-index models to binary and count responses. To take into account the unit norm constraint of the index parameter, we use the ‘delete-one-component’ approach. The asymptotic normality of the estimates is demonstrated. Furthermore, the smoothly clipped absolute deviation penalty is added for variable selection of parameters both in the nonparametric part and the parametric part, and the oracle property of the variable selection procedure is shown. Finally, some simulation studies are carried out to illustrate the finite sample performance.  相似文献   

13.
ABSTRACT

In this paper, we study a novelly robust variable selection and parametric component identification simultaneously in varying coefficient models. The proposed estimator is based on spline approximation and two smoothly clipped absolute deviation (SCAD) penalties through rank regression, which is robust with respect to heavy-tailed errors or outliers in the response. Furthermore, when the tuning parameter is chosen by modified BIC criterion, we show that the proposed procedure is consistent both in variable selection and the separation of varying and constant coefficients. In addition, the estimators of varying coefficients possess the optimal convergence rate under some assumptions, and the estimators of constant coefficients have the same asymptotic distribution as their counterparts obtained when the true model is known. Simulation studies and a real data example are undertaken to assess the finite sample performance of the proposed variable selection procedure.  相似文献   

14.
In this paper, we consider the estimation of both the parameters and the nonparametric link function in partially linear single‐index models for longitudinal data that may be unbalanced. In particular, a new three‐stage approach is proposed to estimate the nonparametric link function using marginal kernel regression and the parametric components with generalized estimating equations. The resulting estimators properly account for the within‐subject correlation. We show that the parameter estimators are asymptotically semiparametrically efficient. We also show that the asymptotic variance of the link function estimator is minimized when the working error covariance matrices are correctly specified. The new estimators are more efficient than estimators in the existing literature. These asymptotic results are obtained without assuming normality. The finite‐sample performance of the proposed method is demonstrated by simulation studies. In addition, two real‐data examples are analyzed to illustrate the methodology.  相似文献   

15.
Varying-coefficient models are very useful for longitudinal data analysis. In this paper, we focus on varying-coefficient models for longitudinal data. We develop a new estimation procedure using Cholesky decomposition and profile least squares techniques. Asymptotic normality for the proposed estimators of varying-coefficient functions has been established. Monte Carlo simulation studies show excellent finite-sample performance. We illustrate our methods with a real data example.  相似文献   

16.
We consider varying coefficient models, which are an extension of the classical linear regression models in the sense that the regression coefficients are replaced by functions in certain variables (for example, time), the covariates are also allowed to depend on other variables. Varying coefficient models are popular in longitudinal data and panel data studies, and have been applied in fields such as finance and health sciences. We consider longitudinal data and estimate the coefficient functions by the flexible B-spline technique. An important question in a varying coefficient model is whether an estimated coefficient function is statistically different from a constant (or zero). We develop testing procedures based on the estimated B-spline coefficients by making use of nice properties of a B-spline basis. Our method allows longitudinal data where repeated measurements for an individual can be correlated. We obtain the asymptotic null distribution of the test statistic. The power of the proposed testing procedures are illustrated on simulated data where we highlight the importance of including the correlation structure of the response variable and on real data.  相似文献   

17.
As a useful extension of partially linear models and varying coefficient models, the partially linear varying coefficient model is useful in statistical modelling. This paper considers statistical inference for the semiparametric model when the covariates in the linear part are measured with additive error and some additional linear restrictions on the parametric component are available. We propose a restricted modified profile least-squares estimator for the parametric component, and prove the asymptotic normality of the proposed estimator. To test hypotheses on the parametric component, we propose a test statistic based on the difference between the corrected residual sums of squares under the null and alterative hypotheses, and show that its limiting distribution is a weighted sum of independent chi-square distributions. We also develop an adjusted test statistic, which has an asymptotically standard chi-squared distribution. Some simulation studies are conducted to illustrate our approaches.  相似文献   

18.
By approximating the nonparametric component using a regression spline in generalized partial linear models (GPLM), robust generalized estimating equations (GEE), involving bounded score function and leverage-based weighting function, can be used to estimate the regression parameters in GPLM robustly for longitudinal data or clustered data. In this paper, score test statistics are proposed for testing the regression parameters with robustness, and their asymptotic distributions under the null hypothesis and a class of local alternative hypotheses are studied. The proposed score tests reply on the estimation of a smaller model without the testing parameters involved, and perform well in the simulation studies and real data analysis conducted in this paper.  相似文献   

19.
For longitudinal data, the within-subject dependence structure and covariance parameters may be of practical and theoretical interests. The estimation of covariance parameters has received much attention and been studied mainly in the framework of generalized estimating equations (GEEs). The GEEs method, however, is sensitive to outliers. In this paper, an alternative set of robust generalized estimating equations for both the mean and covariance parameters are proposed in the partial linear model for longitudinal data. The asymptotic properties of the proposed estimators of regression parameters, non-parametric function and covariance parameters are obtained. Simulation studies are conducted to evaluate the performance of the proposed estimators under different contaminations. The proposed method is illustrated with a real data analysis.  相似文献   

20.
For estimation of time-varying coefficient longitudinal models, the widely used local least-squares (LS) or covariance-weighted local LS smoothing uses information from the local sample average. Motivated by the fact that a combination of multiple quantiles provides a more complete picture of the distribution, we investigate quantile regression-based methods to improve efficiency by optimally combining information across quantiles. Under the working independence scenario, the asymptotic variance of the proposed estimator approaches the Cramér–Rao lower bound. In the presence of dependence among within-subject measurements, we adopt a prewhitening technique to transform regression errors into independent innovations and show that the prewhitened optimally weighted quantile average estimator asymptotically achieves the Cramér–Rao bound for the independent innovations. Fully data-driven bandwidth selection and optimal weights estimation are implemented through a two-step procedure. Monte Carlo studies show that the proposed method delivers more robust and superior overall performance than that of the existing methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号