共查询到20条相似文献,搜索用时 15 毫秒
1.
The robust estimation and the local influence analysis for linear regression models with scale mixtures of multivariate skew-normal distributions have been developed in this article. The main virtue of considering the linear regression model under the class of scale mixtures of skew-normal distributions is that they have a nice hierarchical representation which allows an easy implementation of inference. Inspired by the expectation maximization algorithm, we have developed a local influence analysis based on the conditional expectation of the complete-data log-likelihood function, which is a measurement invariant under reparametrizations. This is because the observed data log-likelihood function associated with the proposed model is somewhat complex and with Cook's well-known approach it can be very difficult to obtain measures of the local influence. Some useful perturbation schemes are discussed. In order to examine the robust aspect of this flexible class against outlying and influential observations, some simulation studies have also been presented. Finally, a real data set has been analyzed, illustrating the usefulness of the proposed methodology. 相似文献
2.
The existing studies on spatial dynamic panel data model (SDPDM) mainly focus on the normality assumption of response variables and random effects. This assumption may be inappropriate in some applications. This paper proposes a new SDPDM by assuming that response variables and random effects follow the multivariate skew-normal distribution. A Markov chain Monte Carlo algorithm is developed to evaluate Bayesian estimates of unknown parameters and random effects in skew-normal SDPDM by combining the Gibbs sampler and the Metropolis–Hastings algorithm. A Bayesian local influence analysis method is developed to simultaneously assess the effect of minor perturbations to the data, priors and sampling distributions. Simulation studies are conducted to investigate the finite-sample performance of the proposed methodologies. An example is illustrated by the proposed methodologies. 相似文献
3.
《Journal of Statistical Computation and Simulation》2012,82(10):1115-1129
This paper presents a unified method for influence analysis to deal with random effects appeared in additive nonlinear regression models for repeated measurement data. The basic idea is to apply the Q-function, the conditional expectation of the complete-data log-likelihood function obtained from EM algorithm, instead of the observed-data log-likelihood function as used in standard influence analysis. Diagnostic measures are derived based on the case-deletion approach and the local influence approach. Two real examples and a simulation study are examined to illustrate our methodology. 相似文献
4.
Xingde Duan Wing Kam Fung Niansheng Tang 《Journal of Statistical Computation and Simulation》2017,87(10):1925-1939
Semiparametric reproductive dispersion mixed model (SPRDMM) is a natural extension of the reproductive dispersion model and the semiparametric mixed model. In this paper, we relax the normality assumption of random effects in SPRDMM and use a truncated and centred Dirichlet process prior to specify random effects, and present the Bayesian P-spline to approximate the smoothing unknown function. A hybrid algorithm combining the block Gibbs sampler and the Metropolis–Hastings algorithm is implemented to sample observations from the posterior distribution. Also, we develop Bayesian case deletion influence measure for SPRDMM based on the φ-divergence and present those computationally feasible formulas. Several simulation studies and a real example are presented to illustrate the proposed methodologies. 相似文献
5.
Linear mixed models have been widely used to analyze repeated measures data which arise in many studies. In most applications, it is assumed that both the random effects and the within-subjects errors are normally distributed. This can be extremely restrictive, obscuring important features of within-and among-subject variations. Here, quantile regression in the Bayesian framework for the linear mixed models is described to carry out the robust inferences. We also relax the normality assumption for the random effects by using a multivariate skew-normal distribution, which includes the normal ones as a special case and provides robust estimation in the linear mixed models. For posterior inference, we propose a Gibbs sampling algorithm based on a mixture representation of the asymmetric Laplace distribution and multivariate skew-normal distribution. The procedures are demonstrated by both simulated and real data examples. 相似文献
6.
The class of nonlinear reproductive dispersion mixed models (NRDMMs) is an extension of nonlinear reproductive dispersion models and generalized linear mixed models. This paper discusses the influence analysis of the model based on Laplace approximation. The equivalence of case-deletion models and mean-shift outlier models in NRDMMs is investigated, and some diagnostic measures are proposed via the case-deletion method. We also investigate the assessment of local influence of various perturbation schemes. The proposed method is illustrated with an example. 相似文献
7.
Filidor V. Labra Aldo M. Garay Victor H. Lachos Edwin M.M. Ortega 《Journal of statistical planning and inference》2012
An extension of some standard likelihood based procedures to heteroscedastic nonlinear regression models under scale mixtures of skew-normal (SMSN) distributions is developed. This novel class of models provides a useful generalization of the heteroscedastic symmetrical nonlinear regression models (Cysneiros et al., 2010), since the random term distributions cover both symmetric as well as asymmetric and heavy-tailed distributions such as skew-t, skew-slash, skew-contaminated normal, among others. A simple EM-type algorithm for iteratively computing maximum likelihood estimates of the parameters is presented and the observed information matrix is derived analytically. In order to examine the performance of the proposed methods, some simulation studies are presented to show the robust aspect of this flexible class against outlying and influential observations and that the maximum likelihood estimates based on the EM-type algorithm do provide good asymptotic properties. Furthermore, local influence measures and the one-step approximations of the estimates in the case-deletion model are obtained. Finally, an illustration of the methodology is given considering a data set previously analyzed under the homoscedastic skew-t nonlinear regression model. 相似文献
8.
This paper considers the optimal design problem for multivariate mixed-effects logistic models with longitudinal data. A decomposition method of the binary outcome and the penalized quasi-likelihood are used to obtain the information matrix. The D-optimality criterion based on the approximate information matrix is minimized under different cost constraints. The results show that the autocorrelation coefficient plays a significant role in the design. To overcome the dependence of the D-optimal designs on the unknown fixed-effects parameters, the Bayesian D-optimality criterion is proposed. The relative efficiencies of designs reveal that both the cost ratio and autocorrelation coefficient play an important role in the optimal designs. 相似文献
9.
In this paper, we extend the censored linear regression model with normal errors to Student-t errors. A simple EM-type algorithm for iteratively computing maximum-likelihood estimates of the parameters is presented. To examine the performance of the proposed model, case-deletion and local influence techniques are developed to show its robust aspect against outlying and influential observations. This is done by the analysis of the sensitivity of the EM estimates under some usual perturbation schemes in the model or data and by inspecting some proposed diagnostic graphics. The efficacy of the method is verified through the analysis of simulated data sets and modelling a real data set first analysed under normal errors. The proposed algorithm and methods are implemented in the R package CensRegMod. 相似文献
10.
Nian-Sheng Tang Bo-Cheng Wei & Xue-Ren Wang 《Australian & New Zealand Journal of Statistics》2002,44(2):185-192
A robust case-deletion diagnostic which could avoid masking is presented for nonlinear reproductive dispersion models (NRDM) (Jorgensen, 1997) that include generalized linear models and exponential family nonlinear models as special cases. Based on the second-order approximation of log-likelihood displacement and Poon & Poon's (1999) conformal normal curvature, a measure of local influence ranging from 0 to 1 is constructed. An example illustrates application of the techniques. 相似文献
11.
Zaixing Li 《统计学通讯:理论与方法》2017,46(9):4449-4463
In this article, the profile maximal likelihood estimate (PMLE) is proposed for non linear mixed models (NLMMs) with longitudinal data where the variance components are estimated by the expectation-maximization (EM) algorithm. Strong consistency and the asymptotic normality of the estimators are derived. A simulation study is conducted where the performance of the PLME and the Fishing scoring estimate (FSE) in literatures are compared. Moreover, a real data is also analyzed to investigate the empirical performance of the procedure. 相似文献
12.
Mahdi Teimouri 《Journal of applied statistics》2021,48(7):1154
Grouped data are frequently used in several fields of study. In this work, we use the expectation-maximization (EM) algorithm for fitting the skew-normal (SN) mixture model to the grouped data. Implementing the EM algorithm requires computing the one-dimensional integrals for each group or class. Our simulation study and real data analyses reveal that the EM algorithm not only always converges but also can be implemented in just a few seconds even when the number of components is large, contrary to the Bayesian paradigm that is computationally expensive. The accuracy of the EM algorithm and superiority of the SN mixture model over the traditional normal mixture model in modelling grouped data are demonstrated through the simulation and three real data illustrations. For implementing the EM algorithm, we use the package called ForestFit developed for R environment available at https://cran.r-project.org/web/packages/ForestFit/index.html. 相似文献
13.
Liu-Cang Wu Zhong-Zhan Zhang Deng-Ke Xu 《Journal of Statistical Computation and Simulation》2013,83(7):1266-1278
A regression model with skew-normal errors provides a useful extension for ordinary normal regression models when the data set under consideration involves asymmetric outcomes. Variable selection is an important issue in all regression analyses, and in this paper, we investigate the simultaneously variable selection in joint location and scale models of the skew-normal distribution. We propose a unified penalized likelihood method which can simultaneously select significant variables in the location and scale models. Furthermore, the proposed variable selection method can simultaneously perform parameter estimation and variable selection in the location and scale models. With appropriate selection of the tuning parameters, we establish the consistency and the oracle property of the regularized estimators. Simulation studies and a real example are used to illustrate the proposed methodologies. 相似文献
14.
AbstractAugmented mixed beta regression models are suitable choices for modeling continuous response variables on the closed interval [0, 1]. The random eeceeects in these models are typically assumed to be normally distributed, but this assumption is frequently violated in some applied studies. In this paper, an augmented mixed beta regression model with skew-normal independent distribution for random effects are used. Next, we adopt a Bayesian approach for parameter estimation using the MCMC algorithm. The methods are then evaluated using some intensive simulation studies. Finally, the proposed models have applied to analyze a dataset from an Iranian Labor Force Survey. 相似文献
15.
Angela Montanari 《Journal of applied statistics》2010,37(3):473-487
Classical factor analysis relies on the assumption of normally distributed factors that guarantees the model to be estimated via the maximum likelihood method. Even when the assumption of Gaussian factors is not explicitly formulated and estimation is performed via the iterated principal factors’ method, the interest is actually mainly focussed on the linear structure of the data, since only moments up to the second ones are involved. In many real situations, the factors could not be adequately described by the first two moments only. For example, skewness characterizing most latent variables in social analysis can be properly measured by the third moment: the factors are not normally distributed and covariance is no longer a sufficient statistic. In this work we propose a factor model characterized by skew-normally distributed factors. Skew-normal refers to a parametric class of probability distributions, that extends the normal distribution by an additional shape parameter regulating the skewness. The model estimation can be solved by the generalized EM algorithm, in which the iterative Newthon–Raphson procedure is needed in the M-step to estimate the factor shape parameter. The proposed skew-normal factor analysis is applied to the study of student satisfaction towards university courses, in order to identify the factors representing different aspects of the latent overall satisfaction. 相似文献
16.
Bent Jrgensen Sren Lundbye-Christensen Peter Xue-Kun Song Li Sun 《Revue canadienne de statistique》1996,24(3):385-402
We propose a class of state-space models for multivariate longitudinal data where the components of the response vector may have different distributions. The approach is based on the class of Tweedie exponential dispersion models, which accommodates a wide variety of discrete, continuous and mixed data. The latent process is assumed to be a Markov process, and the observations are conditionally independent given the latent process, over time as well as over the components of the response vector. This provides a fully parametric alternative to the quasilikelihood approach of Liang and Zeger. We estimate the regression parameters for time-varying covariates entering either via the observation model or via the latent process, based on an estimating equation derived from the Kalman smoother. We also consider analysis of residuals from both the observation model and the latent process. 相似文献
17.
Xing-De Duan 《Statistics》2016,50(3):525-539
This paper develops a Bayesian approach to obtain the joint estimates of unknown parameters, nonparametric functions and random effects in generalized partially linear mixed models (GPLMMs), and presents three case deletion influence measures to identify influential observations based on the φ-divergence, Cook's posterior mean distance and Cook's posterior mode distance of parameters. Fisher's iterative scoring algorithm is developed to evaluate the posterior modes of parameters in GPLMMs. The first-order approximation to Cook's posterior mode distance is presented. The computationally feasible formulae for the φ-divergence diagnostic and Cook's posterior mean distance are given. Several simulation studies and an example are presented to illustrate our proposed methodologies. 相似文献
18.
Partially linear models (PLMs) are an important tool in modelling economic and biometric data and are considered as a flexible generalization of the linear model by including a nonparametric component of some covariate into the linear predictor. Usually, the error component is assumed to follow a normal distribution. However, the theory and application (through simulation or experimentation) often generate a great amount of data sets that are skewed. The objective of this paper is to extend the PLMs allowing the errors to follow a skew-normal distribution [A. Azzalini, A class of distributions which includes the normal ones, Scand. J. Statist. 12 (1985), pp. 171–178], increasing the flexibility of the model. In particular, we develop the expectation-maximization (EM) algorithm for linear regression models and diagnostic analysis via local influence as well as generalized leverage, following [H. Zhu and S. Lee, Local influence for incomplete-data models, J. R. Stat. Soc. Ser. B 63 (2001), pp. 111–126]. A simulation study is also conducted to evaluate the efficiency of the EM algorithm. Finally, a suitable transformation is applied in a data set on ragweed pollen concentration in order to fit PLMs under asymmetric distributions. An illustrative comparison is performed between normal and skew-normal errors. 相似文献
19.
Varying-coefficient models are very useful for longitudinal data analysis. In this paper, we focus on varying-coefficient models for longitudinal data. We develop a new estimation procedure using Cholesky decomposition and profile least squares techniques. Asymptotic normality for the proposed estimators of varying-coefficient functions has been established. Monte Carlo simulation studies show excellent finite-sample performance. We illustrate our methods with a real data example. 相似文献
20.
In this paper, we develop a methodology for the dynamic Bayesian analysis of generalized odds ratios in contingency tables. It is a standard practice to assume a normal distribution for the random effects in the dynamic system equations. Nevertheless, the normality assumption may be unrealistic in some applications and hence the validity of inferences can be dubious. Therefore, we assume a multivariate skew-normal distribution for the error terms in the system equation at each step. Moreover, we introduce a moving average approach to elicit the hyperparameters. Both simulated data and real data are analyzed to illustrate the application of this methodology. 相似文献