首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aalen's nonparametric additive model in which the regression coefficients are assumed to be unspecified functions of time is a flexible alternative to Cox's proportional hazards model when the proportionality assumption is in doubt. In this paper, we incorporate a general linear hypothesis into the estimation of the time‐varying regression coefficients. We combine unrestricted least squares estimators and estimators that are restricted by the linear hypothesis and produce James‐Stein‐type shrinkage estimators of the regression coefficients. We develop the asymptotic joint distribution of such restricted and unrestricted estimators and use this to study the relative performance of the proposed estimators via their integrated asymptotic distributional risks. We conduct Monte Carlo simulations to examine the relative performance of the estimators in terms of their integrated mean square errors. We also compare the performance of the proposed estimators with a recently devised LASSO estimator as well as with ridge‐type estimators both via simulations and data on the survival of primary billiary cirhosis patients.  相似文献   

2.
We consider a replicated ultrastructural measurement error regression model where predictor variables are observed with error. It is assumed that some prior information regarding the regression coefficients is available in the form of exact linear restrictions. Three classes of estimators of regression coefficients are proposed. These estimators are shown to be consistent as well as satisfying the given restrictions. The asymptotic properties of unrestricted as well as restricted estimators are studied without imposing any distributional assumption on any random component of the model. A Monte Carlo simulations study is performed to assess the effect of sample size, replicates and non-normality on the estimators.  相似文献   

3.
In many clinical studies, subjects are at risk of experiencing more than one type of potentially recurrent event. In some situations, however, the occurrence of an event is observed, but the specific type is not determined. We consider the analysis of this type of incomplete data when the objectives are to summarize features of conditional intensity functions and associated treatment effects, and to study the association between different types of event. Here we describe a likelihood approach based on joint models for the multi-type recurrent events where parameter estimation is obtained from a Monte-Carlo EM algorithm. Simulation studies show that the proposed method gives unbiased estimators for regression coefficients and variance–covariance parameters, and the coverage probabilities of confidence intervals for regression coefficients are close to the nominal level. When the distribution of the frailty variable is misspecified, the method still provides estimators of the regression coefficients with good properties. The proposed method is applied to a motivating data set from an asthma study in which exacerbations were to be sub-typed by cellular analysis of sputum samples as eosinophilic or non-eosinophilic.  相似文献   

4.
Covariate adjusted regression (CAR) is a recently proposed adjustment method for regression analysis where both the response and predictors are not directly observed [?entürk, D., Müller, H.G., 2005. Covariate adjusted regression. Biometrika 92, 75–89]. The available data have been distorted by unknown functions of an observable confounding covariate. CAR provides consistent estimators for the coefficients of the regression between the variables of interest, adjusted for the confounder. We develop a broader class of partial covariate adjusted regression (PCAR) models to accommodate both distorted and undistorted (adjusted/unadjusted) predictors. The PCAR model allows for unadjusted predictors, such as age, gender and demographic variables, which are common in the analysis of biomedical and epidemiological data. The available estimation and inference procedures for CAR are shown to be invalid for the proposed PCAR model. We propose new estimators and develop new inference tools for the more general PCAR setting. In particular, we establish the asymptotic normality of the proposed estimators and propose consistent estimators of their asymptotic variances. Finite sample properties of the proposed estimators are investigated using simulation studies and the method is also illustrated with a Pima Indians diabetes data set.  相似文献   

5.
We study model selection and model averaging in semiparametric partially linear models with missing responses. An imputation method is used to estimate the linear regression coefficients and the nonparametric function. We show that the corresponding estimators of the linear regression coefficients are asymptotically normal. Then a focused information criterion and frequentist model average estimators are proposed and their theoretical properties are established. Simulation studies are performed to demonstrate the superiority of the proposed methods over the existing strategies in terms of mean squared error and coverage probability. Finally, the approach is applied to a real data case.  相似文献   

6.
This paper studies the estimation in the proportional odds model based on randomly truncated data. The proposed estimators for the regression coefficients include a class of minimum distance estimators defined through weighted empirical odds function. We have investigated the asymptotic properties like the consistency and the limiting distribution of the proposed estimators under mild conditions. The finite sample properties were investigated through simulation study making comparison of some of the estimators in the class. We conclude with an illustration of our proposed method to a well-known AIDS data.  相似文献   

7.
We consider two estimation schemes based on penalized quasilikelihood and quasi-pseudo-likelihood in Poisson mixed models. The asymptotic bias in regression coefficients and variance components estimated by penalized quasilikelihood (PQL) is studied for small values of the variance components. We show the PQL estimators of both regression coefficients and variance components in Poisson mixed models have a smaller order of bias compared to those for binomial data. Unbiased estimating equations based on quasi-pseudo-likelihood are proposed and are shown to yield consistent estimators under some regularity conditions. The finite sample performance of these two methods is compared through a simulation study.  相似文献   

8.
We consider a partially linear model with diverging number of groups of parameters in the parametric component. The variable selection and estimation of regression coefficients are achieved simultaneously by using the suitable penalty function for covariates in the parametric component. An MM-type algorithm for estimating parameters without inverting a high-dimensional matrix is proposed. The consistency and sparsity of penalized least-squares estimators of regression coefficients are discussed under the setting of some nonzero regression coefficients with very small values. It is found that the root pn/n-consistency and sparsity of the penalized least-squares estimators of regression coefficients cannot be given consideration simultaneously when the number of nonzero regression coefficients with very small values is unknown, where pn and n, respectively, denote the number of regression coefficients and sample size. The finite sample behaviors of penalized least-squares estimators of regression coefficients and the performance of the proposed algorithm are studied by simulation studies and a real data example.  相似文献   

9.
This paper is concerned with the problem of constructing a good predictive distribution relative to the Kullback–Leibler information in a linear regression model. The problem is equivalent to the simultaneous estimation of regression coefficients and error variance in terms of a complicated risk, which yields a new challenging issue in a decision-theoretic framework. An estimator of the variance is incorporated here into a loss for estimating the regression coefficients. Several estimators of the variance and of the regression coefficients are proposed and shown to improve on usual benchmark estimators both analytically and numerically. Finally, the prediction problem of a distribution is noted to be related to an information criterion for model selection like the Akaike information criterion (AIC). Thus, several AIC variants are obtained based on proposed and improved estimators and are compared numerically with AIC as model selection procedures.  相似文献   

10.
Liang H  Liu X  Li R  Tsai CL 《Annals of statistics》2010,38(6):3811-3836
In partially linear single-index models, we obtain the semiparametrically efficient profile least-squares estimators of regression coefficients. We also employ the smoothly clipped absolute deviation penalty (SCAD) approach to simultaneously select variables and estimate regression coefficients. We show that the resulting SCAD estimators are consistent and possess the oracle property. Subsequently, we demonstrate that a proposed tuning parameter selector, BIC, identifies the true model consistently. Finally, we develop a linear hypothesis test for the parametric coefficients and a goodness-of-fit test for the nonparametric component, respectively. Monte Carlo studies are also presented.  相似文献   

11.
Biao Zhang 《Statistics》2016,50(5):1173-1194
Missing covariate data occurs often in regression analysis. We study methods for estimating the regression coefficients in an assumed conditional mean function when some covariates are completely observed but other covariates are missing for some subjects. We adopt the semiparametric perspective of Robins et al. [Estimation of regression coefficients when some regressors are not always observed. J Amer Statist Assoc. 1994;89:846–866] on regression analyses with missing covariates, in which they pioneered the use of two working models, the working propensity score model and the working conditional score model. A recent approach to missing covariate data analysis is the empirical likelihood method of Qin et al. [Empirical likelihood in missing data problems. J Amer Statist Assoc. 2009;104:1492–1503], which effectively combines unbiased estimating equations. In this paper, we consider an alternative likelihood approach based on the full likelihood of the observed data. This full likelihood-based method enables us to generate estimators for the vector of the regression coefficients that are (a) asymptotically equivalent to those of Qin et al. [Empirical likelihood in missing data problems. J Amer Statist Assoc. 2009;104:1492–1503] when the working propensity score model is correctly specified, and (b) doubly robust, like the augmented inverse probability weighting (AIPW) estimators of Robins et al. [Estimation of regression coefficients when some regressors are not always observed. J Am Statist Assoc. 1994;89:846–866]. Thus, the proposed full likelihood-based estimators improve on the efficiency of the AIPW estimators when the working propensity score model is correct but the working conditional score model is possibly incorrect, and also improve on the empirical likelihood estimators of Qin, Zhang and Leung [Empirical likelihood in missing data problems. J Amer Statist Assoc. 2009;104:1492–1503] when the reverse is true, that is, the working conditional score model is correct but the working propensity score model is possibly incorrect. In addition, we consider a regression method for estimation of the regression coefficients when the working conditional score model is correctly specified; the asymptotic variance of the resulting estimator is no greater than the semiparametric variance bound characterized by the theory of Robins et al. [Estimation of regression coefficients when some regressors are not always observed. J Amer Statist Assoc. 1994;89:846–866]. Finally, we compare the finite-sample performance of various estimators in a simulation study.  相似文献   

12.
Ratio estimators of effect are ordinarily obtained by exponentiating maximum-likelihood estimators (MLEs) of log-linear or logistic regression coefficients. These estimators can display marked positive finite-sample bias, however. We propose a simple correction that removes a substantial portion of the bias due to exponentiation. By combining this correction with bias correction on the log scale, we demonstrate that one achieves complete removal of second-order bias in odds ratio estimators in important special cases. We show how this approach extends to address bias in odds or risk ratio estimators in many common regression settings. We also propose a class of estimators that provide reduced mean bias and squared error, while allowing the investigator to control the risk of underestimating the true ratio parameter. We present simulation studies in which the proposed estimators are shown to exhibit considerable reduction in bias, variance, and mean squared error compared to MLEs. Bootstrapping provides further improvement, including narrower confidence intervals without sacrificing coverage.  相似文献   

13.
In many applications, statistical data are frequently observed subject to a retrospective sampling criterion resulting in right-truncated data. In this article, a general class of semiparametric transformation models that include proportional hazards model and proportional odds model as special cases is studied for the analysis of right-truncated data. We proposed two estimators for regression coefficients. The first estimator is based on martingale estimating equations. The second estimator is based on the conditional likelihood function given the truncation times. The asymptotic properties of both estimators are derived. The finite sample performance is examined through a simulation study.  相似文献   

14.
The problem of estimation of the regression coefficients in a multiple regression model is considered under multicollinearity situation when it is suspected that the regression coefficients may be restricted to a subspace. We present the estimators of the regression coefficients combining the idea of preliminary test and ridge regression methodology. Accordingly, we consider three estimators, namely, the unrestricted ridge regression estimator (URRE), the restricted ridge regression estimator (RRRE), and finally, the preliminary test ridge regression estimator (PTRRE). The biases, variancematrices and mean square errors (mse) of the estimators are derived and compared with the usual estimators. Regions of optimality of the estimators are determined by studying the mse criterion. The conditions of superiority of the estimators over the traditional estimators as in Saleh and Han (1990) and Ali and Saleh (1991) have also been discussed.  相似文献   

15.
In this paper, we consider a regression model and propose estimators which are the weighted averages of two estimators among three estimators; the Stein-rule (SR), the minimum mean squared error (MMSE), and the adjusted minimum mean-squared error (AMMSE) estimators. It is shown that one of the proposed estimators has smaller mean-squared error (MSE) than the positive-part Stein-rule (PSR) estimator over a moderate region of parameter space when the number of the regression coefficients is small (i.e., 3), and its MSE performance is comparable to the PSR estimator even when the number of the regression coefficients is not so small.  相似文献   

16.
We consider a number of estimators of regression coefficients, all of generalized ridge, or 'shrinkage' type. Results of a simulation study indicate that with respect to two commonly used mean square error criteria, two ordinary ridge estimators, one proposed by Hoerl, Kennard and Baldwin, and the other introduced here, perform substantially better than both least squares and the other estimators discussed here  相似文献   

17.
We propose a class of additive transformation risk models for clustered failure time data. Our models are motivated by the usual additive risk model for independent failure times incorporating a frailty with mean one and constant variability which is a natural generalization of the additive risk model from univariate failure time to multivariate failure time. An estimating equation approach based on the marginal hazards function is proposed. Under the assumption that cluster sizes are completely random, we show the resulting estimators of the regression coefficients are consistent and asymptotically normal. We also provide goodness-of-fit test statistics for choosing the transformation. Simulation studies and real data analysis are conducted to examine the finite-sample performance of our estimators.  相似文献   

18.
In this article, based on the covariate balancing propensity score (CBPS), estimators for the regression coefficients and the population mean are obtained, when the responses of linear models are missing at random. It is proved that the proposed estimators are asymptotically normal. In simulation studies and real example, the proposed estimators show improved performance relative to usual augmented inverse probability weighted estimators.  相似文献   

19.
We derived two methods to estimate the logistic regression coefficients in a meta-analysis when only the 'aggregate' data (mean values) from each study are available. The estimators we proposed are the discriminant function estimator and the reverse Taylor series approximation. These two methods of estimation gave similar estimators using an example of individual data. However, when aggregate data were used, the discriminant function estimators were quite different from the other two estimators. A simulation study was then performed to evaluate the performance of these two estimators as well as the estimator obtained from the model that simply uses the aggregate data in a logistic regression model. The simulation study showed that all three estimators are biased. The bias increases as the variance of the covariate increases. The distribution type of the covariates also affects the bias. In general, the estimator from the logistic regression using the aggregate data has less bias and better coverage probabilities than the other two estimators. We concluded that analysts should be cautious in using aggregate data to estimate the parameters of the logistic regression model for the underlying individual data.  相似文献   

20.
The problem of consistent estimation of regression coefficients in a multivariate linear ultrastructural measurement error model is considered in this article when some additional information on regression coefficients is available a priori. Such additional information is expressible in the form of stochastic linear restrictions. Utilizing stochastic restrictions given a priori, some methodologies are presented to obtain the consistent estimators of regression coefficients under two types of additional information separately, viz., covariance matrix of measurement errors and reliability matrix associated with explanatory variables. The measurement errors are assumed to be not necessarily normally distributed. The asymptotic properties of the proposed estimators are derived and analyzed analytically as well as numerically through a Monte Carlo simulation experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号