共查询到20条相似文献,搜索用时 9 毫秒
1.
A class of weighted normal distributions and its variants useful for inequality constrained analysis
Hea-Jung Kim 《Statistics》2013,47(5):421-441
This article develops a class of the weighted normal distributions for which the probability density function has the form of a product of a normal density and a weight function. The class constitutes marginal distributions obtained from various kinds of doubly truncated bivariate normal distributions. This class of distributions strictly includes the normal, skew–normal and two-piece skew–normal and is useful for selection modelling and inequality constrained normal mean analysis. Some distributional properties and Bayesian perspectives of the class are given. Probabilistic representation of the distributions is also given. The representation is shown to be straightforward to specify distribution and to implement computation, with output readily adapted for required analysis. Necessary theories and illustrative examples are provided. 相似文献
2.
In this paper, we prove that the joint distribution of random vectors Z 1 and Z 2 and the distribution of Z 2 are skew normal provided that Z 1 is skew normally distributed and Z 2 conditioning on Z 1 is distributed as closed skew normal. Also, we extend the main results to the matrix variate case. 相似文献
3.
Hea-Jung Kim 《Statistics》2013,47(1):89-106
This article introduces a class of weighted multivariate t-distributions, which includes the multivariate generalized Student t and multivariate skew t as its special members. This class is defined as the marginal distribution of a doubly truncated multivariate generalized Student t-distribution and studied from several aspects such as weighting of probability density functions, inequality constrained multivariate Student t-distributions, scale mixtures of multivariate normal and probabilistic representations. The relationships among these aspects are given, and various properties of the class are also discussed. Necessary theories and two applications are provided. 相似文献
4.
The lower dimensional marginal density functions of a truncated multivariate density function is derived in general, and shown that it is a function of untruncated marginal density function, appropriately defined conditional distribution function and size of the multivariate truncation region. As a special case, lower dimensional marginal density function of a truncated multivariate normal distribution is given. 相似文献
5.
Michael P. McAssey 《Journal of applied statistics》2013,40(5):1120-1131
An empirical test is presented as a tool for assessing whether a specified multivariate probability model is suitable to describe the underlying distribution of a set of observations. This test is based on the premise that, given any probability distribution, the Mahalanobis distances corresponding to data generated from that distribution will likewise follow a distinct distribution that can be estimated well by means of a large sample. We demonstrate the effectiveness of the test for detecting departures from several multivariate distributions. We then apply the test to a real multivariate data set to confirm that it is consistent with a multivariate beta model. 相似文献
6.
7.
Hea-Jung Kim 《Journal of applied statistics》2015,42(9):1877-1895
In many practical situations, a statistical practitioner often faces a problem of classifying an object from one of the segmented (or screened) populations where the segmentation was conducted by a set of screening variables. This paper addresses this problem, proposing and studying yet another optimal rule for classification with segmented populations. A class of q-dimensional rectangle-screened elliptically contoured (RSEC) distributions is considered for flexibly modeling the segmented populations. Based on the properties of the RSEC distributions, a parametric procedure for the segmented classification analysis (SCA) is proposed. This includes motivation for the SCA as well as some theoretical propositions regarding its optimal rule and properties. These properties allow us to establish other important results which include an efficient estimation of the rule by the Monte Carlo expectation–conditional maximization algorithm and an optimal variable selection procedure. Two numerical examples making use of utilizing a simulation study and a real dataset application and advocating the SCA procedure are also provided. 相似文献
8.
The ordinary-G class of distributions is defined to have the cumulative distribution function (cdf) as the value of the cdf of the ordinary distribution F whose range is the unit interval at G, that is, F(G), and it generalizes the ordinary distribution. In this work, we consider the standard two-sided power distribution to define other classes like the beta-G and the Kumaraswamy-G classes. We extend the idea of two-sidedness to other ordinary distributions like normal. After studying the basic properties of the new class in general setting, we consider the two-sided generalized normal distribution with maximum likelihood estimation procedure. 相似文献
9.
In this note some properties of the absolute moments of a doubly truncated arbitrary multivariate distribution are studied and several moment inequalities are derived. 相似文献
10.
A new class of multivariate skew distributions with applications to bayesian regression models 总被引:1,自引:0,他引:1
Abstract: The authors develop a new class of distributions by introducing skewness in multivariate elliptically symmetric distributions. The class, which is obtained by using transformation and conditioning, contains many standard families including the multivariate skew‐normal and t distributions. The authors obtain analytical forms of the densities and study distributional properties. They give practical applications in Bayesian regression models and results on the existence of the posterior distributions and moments under improper priors for the regression coefficients. They illustrate their methods using practical examples. 相似文献
11.
12.
A. Azzalini & A. Capitanio 《Journal of the Royal Statistical Society. Series B, Statistical methodology》1999,61(3):579-602
Azzalini and Dalla Valle have recently discussed the multivariate skew normal distribution which extends the class of normal distributions by the addition of a shape parameter. The first part of the present paper examines further probabilistic properties of the distribution, with special emphasis on aspects of statistical relevance. Inferential and other statistical issues are discussed in the following part, with applications to some multivariate statistics problems, illustrated by numerical examples. Finally, a further extension is described which introduces a skewing factor of an elliptical density. 相似文献
13.
Generalized Gibbs samplers simulate from any direction, not necessarily limited to the coordinate directions of the parameters of the objective function. We study how to optimally choose such directions in a random scan Gibbs sampler setting. We consider that optimal directions will be those that minimize the Kullback–Leibler divergence of two Markov chain Monte Carlo steps. Two distributions over direction are proposed for the multivariate Normal objective function. The resulting algorithms are used to simulate from a truncated multivariate Normal distribution, and the performance of our algorithms is compared with the performance of two algorithms based on the Gibbs sampler. 相似文献
14.
Given a random vector (X1,…, Xn) for which the univariate and bivariate marginal distributions belong to some specified families of distributions, we present a procedure for constructing families of multivariate distributions with the specified univariate and bivariate margins. Some general properties of the resulting families of multivariate distributions are reviewed. This procedure is illustrated by generalizing the bivariate Plackett (1965) and Clayton (1978) distributions to three dimensions. In addition to providing rich families of models for data analysis, this method of construction provides a convenient way of simulating observations from multivariate distributions with specific types of univariate and bivariate marginal distributions. A general algorithm for simulating random observations from these families of multivariate distributions is presented 相似文献
15.
W. Fieger 《统计学通讯:理论与方法》2013,42(2):135-140
16.
In this paper we introduce a new class of multivariate unimodal distributions, motivated by Khintchine's representation for unimodal densities on the real line. We start by introducing a new class of unimodal distributions which can then be naturally extended to higher dimensions, using the multivariate Gaussian copula. Under both univariate and multivariate settings, we provide MCMC algorithms to perform inference about the model parameters and predictive densities. The methodology is illustrated with univariate and bivariate examples, and with variables taken from a real data set. 相似文献
17.
Deepak Singh 《统计学通讯:理论与方法》2020,49(17):4162-4177
AbstractWe construct a new bivariate mixture of negative binomial distributions which represents over-dispersed data more efficiently. This is an extension of a univariate mixture of beta and negative binomial distributions. Characteristics of this joint distribution are studied including conditional distributions. Some properties of the correlation coefficient are explored. We demonstrate the applicability of our proposed model by fitting to three real data sets with correlated count data. A comparison is made with some previously used models to show the effectiveness of the new model. 相似文献
18.
A random vector has a multivariate Pareto distribution if one of its univariate conditional distribution is Pareto and some of its marginals are identically distributed.A general method developed in the course of the proof of this result is applied also to characterize the multivariate Student (Cauchy) measure by one univariate Student conditional distribution. 相似文献
19.
Rasool Roozegar 《统计学通讯:理论与方法》2017,46(22):11404-11423
A class of power series skew normal distributions is introduced by generalizing the geometric skew normal distribution of Kundu. Various mathematical properties are derived and estimation addressed by the method of maximum likelihood. The data application of Kundu [Sankhyā B, 76, 2014, 167–189] is revisited and the proposed class is shown to provide a better fit. 相似文献
20.
In this article, a new form of multivariate slash distribution is introduced and some statistical properties are derived. In order to illustrate the advantage of this distribution over the existing generalized multivariate slash distribution in the literature, it is applied to a real data set. 相似文献