首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
In this article, we extend smoothing splines to model the regression mean structure when data are sampled through a complex survey. Smoothing splines are evaluated both with and without sample weights, and are compared with local linear estimator. Simulation studies find that nonparametric estimators perform better when sample weights are incorporated, rather than being treated as if iid. They also find that smoothing splines perform better than local linear estimator through completely data-driven bandwidth selection methods.  相似文献   

2.
Cook (1986) presented the idea of local influence to study the sensitivity of inferences to model assumptions:introduce a vector δ of perturbations to the model; choose a discrepancy function D to measure differences between the original inference and the inference under the perturbed model; study the behavior of D near δ = 0, the original model, usually by taking derivatives. Johnson and Geisser (1983) measure influence in Bayesian inference by the Kullback-Leibler divergence between predictive distributions. I~IcCulloch (1989) is a synthesis of Cook and Johnson and Geisser, using Kullback-Leibler divergence between posterior or predictive distributions as the discrepancy function in Bayesian local influence analyses. We analyze a special case for which McCulloch gives the general theory; namely, the linear model with conjugate prior. We present specific formulae for local influence measures for 1) changes in the parameters of the gamma prior for the precision, 2) changes in the mean of the normal prior for the regression coefficients, 3) changes in the covariance matrix of the normal prior for the regression coefficients and 4) changes in the case weights. Our method is an easy way to find locally influential subsets of points without knowing in advance the sizes of the subsets. The techniques are illustrated with a regression example.  相似文献   

3.
This paper shows how cubic smoothing splines fitted to univariate time series data can be used to obtain local linear forecasts. The approach is based on a stochastic state‐space model which allows the use of likelihoods for estimating the smoothing parameter, and which enables easy construction of prediction intervals. The paper shows that the model is a special case of an ARIMA(0, 2, 2) model; it provides a simple upper bound for the smoothing parameter to ensure an invertible model; and it demonstrates that the spline model is not a special case of Holt's local linear trend method. The paper compares the spline forecasts with Holt's forecasts and those obtained from the full ARIMA(0, 2, 2) model, showing that the restricted parameter space does not impair forecast performance. The advantage of this approach over a full ARIMA(0, 2, 2) model is that it gives a smooth trend estimate as well as a linear forecast function.  相似文献   

4.
We consider a semiparametric method based on partial splines for estimating the unknown function and partially linear regression parameters in partially linear single-index models. Three methods—project pursuit regression (PPR), average derivative estimation (ADE), and a boosting method—are considered for estimating the single-index parameters. Simulations revealed that PPR with partial splines was superior in estimating single-index parameters, while the boosting method with partial splines performed no better than PPR and ADE. All three methods performed similarly in estimating the partially linear regression parameters. The relative performances of the methods are also illustrated using a real-world data example.  相似文献   

5.
Robust splines     
We consider the problem of fitting a cubic spline to data using robust regression techniques. Some important properties of splines are discussed, showing that their use as a regression model is related in principle to the concept of robustness. Methods for fitting splines and interpreting the results are outlined, and an illustrative example is given.  相似文献   

6.
In this study, we develop nonparametric analysis of deviance tools for generalized partially linear models based on local polynomial fitting. Assuming a canonical link, we propose expressions for both local and global analysis of deviance, which admit an additivity property that reduces to analysis of variance decompositions in the Gaussian case. Chi-square tests based on integrated likelihood functions are proposed to formally test whether the nonparametric term is significant. Simulation results are shown to illustrate the proposed chi-square tests and to compare them with an existing procedure based on penalized splines. The methodology is applied to German Bundesbank Federal Reserve data.  相似文献   

7.
Generalized additive mixed models are proposed for overdispersed and correlated data, which arise frequently in studies involving clustered, hierarchical and spatial designs. This class of models allows flexible functional dependence of an outcome variable on covariates by using nonparametric regression, while accounting for correlation between observations by using random effects. We estimate nonparametric functions by using smoothing splines and jointly estimate smoothing parameters and variance components by using marginal quasi-likelihood. Because numerical integration is often required by maximizing the objective functions, double penalized quasi-likelihood is proposed to make approximate inference. Frequentist and Bayesian inferences are compared. A key feature of the method proposed is that it allows us to make systematic inference on all model components within a unified parametric mixed model framework and can be easily implemented by fitting a working generalized linear mixed model by using existing statistical software. A bias correction procedure is also proposed to improve the performance of double penalized quasi-likelihood for sparse data. We illustrate the method with an application to infectious disease data and we evaluate its performance through simulation.  相似文献   

8.
A partially linear model is a semiparametric regression model that consists of parametric and nonparametric regression components in an additive form. In this article, we propose a partially linear model using a Gaussian process regression approach and consider statistical inference of the proposed model. Based on the proposed model, the estimation procedure is described by posterior distributions of the unknown parameters and model comparisons between parametric representation and semi- and nonparametric representation are explored. Empirical analysis of the proposed model is performed with synthetic data and real data applications.  相似文献   

9.
This article considers a generalization of the functional linear regression in which an additional real variable influences smoothly the functional coefficient. We thus define a varying-coefficient regression model for functional data. We propose two estimators based, respectively, on conditional functional principal regression and on local penalized regression splines and prove their pointwise consistency. We check, with the prediction one day ahead of ozone concentration in the city of Toulouse, the ability of such nonlinear functional approaches to produce competitive estimations.  相似文献   

10.
In this article we study the method of nonparametric regression based on a transformation model, under which an unknown transformation of the survival time is nonlinearly, even more, nonparametrically, related to the covariates with various error distributions, which are parametrically specified with unknown parameters. Local linear approximations and locally weighted least squares are applied to obtain estimators for the effects of covariates with censored observations. We show that the estimators are consistent and asymptotically normal. This transformation model, coupled with local linear approximation techniques, provides many alternatives to the more general proportional hazards models with nonparametric covariates.  相似文献   

11.
Methods for choosing a fixed set of knot locations in additive spline models are fairly well established in the statistical literature. The curse of dimensionality makes it nontrivial to extend these methods to nonadditive surface models, especially when there are more than a couple of covariates. We propose a multivariate Gaussian surface regression model that combines both additive splines and interactive splines, and a highly efficient Markov chain Monte Carlo algorithm that updates all the knot locations jointly. We use shrinkage prior to avoid overfitting with different estimated shrinkage factors for the additive and surface part of the model, and also different shrinkage parameters for the different response variables. Simulated data and an application to firm leverage data show that the approach is computationally efficient, and that allowing for freely estimated knot locations can offer a substantial improvement in out‐of‐sample predictive performance.  相似文献   

12.
It is known that for nonparametric regression, local linear composite quantile regression (local linear CQR) is a more competitive technique than classical local linear regression since it can significantly improve estimation efficiency under a class of non-normal and symmetric error distributions. However, this method only applies to symmetric errors because, without symmetric condition, the estimation bias is non-negligible and therefore the resulting estimator is inconsistent. In this paper, we propose a weighted local linear CQR method for general error conditions. This method applies to both symmetric and asymmetric random errors. Because of the use of weights, the estimation bias is eliminated asymptotically and the asymptotic normality is established. Furthermore, by minimizing asymptotic variance, the optimal weights are computed and consequently the optimal estimate (the most efficient estimate) is obtained. By comparing relative efficiency theoretically or numerically, we can ensure that the new estimation outperforms the local linear CQR estimation. Finite sample behaviors conducted by simulation studies further illustrate the theoretical findings.  相似文献   

13.
Model checking with discrete data regressions can be difficult because the usual methods such as residual plots have complicated reference distributions that depend on the parameters in the model. Posterior predictive checks have been proposed as a Bayesian way to average the results of goodness-of-fit tests in the presence of uncertainty in estimation of the parameters. We try this approach using a variety of discrepancy variables for generalized linear models fitted to a historical data set on behavioural learning. We then discuss the general applicability of our findings in the context of a recent applied example on which we have worked. We find that the following discrepancy variables work well, in the sense of being easy to interpret and sensitive to important model failures: structured displays of the entire data set, general discrepancy variables based on plots of binned or smoothed residuals versus predictors and specific discrepancy variables created on the basis of the particular concerns arising in an application. Plots of binned residuals are especially easy to use because their predictive distributions under the model are sufficiently simple that model checks can often be made implicitly. The following discrepancy variables did not work well: scatterplots of latent residuals defined from an underlying continuous model and quantile–quantile plots of these residuals.  相似文献   

14.
The paper proposes a Bayesian quantile regression method for hierarchical linear models. Existing approaches of hierarchical linear quantile regression models are scarce and most of them were not from the perspective of Bayesian thoughts, which is important for hierarchical models. In this paper, based on Bayesian theories and Markov Chain Monte Carlo methods, we introduce Asymmetric Laplace distributed errors to simulate joint posterior distributions of population parameters and across-unit parameters and then derive their posterior quantile inferences. We run a simulation as the proposed method to examine the effects on parameters induced by units and quantile levels; the method is also applied to study the relationship between Chinese rural residents' family annual income and their cultivated areas. Both the simulation and real data analysis indicate that the method is effective and accurate.  相似文献   

15.
ABSTRACT

M-estimation is a widely used technique for robust statistical inference. In this paper, we study robust partially functional linear regression model in which a scale response variable is explained by a function-valued variable and a finite number of real-valued variables. For the estimation of the regression parameters, which include the infinite dimensional function as well as the slope parameters for the real-valued variables, we use polynomial splines to approximate the slop parameter. The estimation procedure is easy to implement, and it is resistant to heavy-tailederrors or outliers in the response. The asymptotic properties of the proposed estimators are established. Finally, we assess the finite sample performance of the proposed method by Monte Carlo simulation studies.  相似文献   

16.
Linear mixed models have been widely used to analyze repeated measures data which arise in many studies. In most applications, it is assumed that both the random effects and the within-subjects errors are normally distributed. This can be extremely restrictive, obscuring important features of within-and among-subject variations. Here, quantile regression in the Bayesian framework for the linear mixed models is described to carry out the robust inferences. We also relax the normality assumption for the random effects by using a multivariate skew-normal distribution, which includes the normal ones as a special case and provides robust estimation in the linear mixed models. For posterior inference, we propose a Gibbs sampling algorithm based on a mixture representation of the asymmetric Laplace distribution and multivariate skew-normal distribution. The procedures are demonstrated by both simulated and real data examples.  相似文献   

17.
Semiparametric regression models and estimating covariance functions are very useful in longitudinal study. Unfortunately, challenges arise in estimating the covariance function of longitudinal data collected at irregular time points. In this article, for mean term, a partially linear model is introduced and for covariance structure, a modified Cholesky decomposition approach is proposed to heed the positive-definiteness constraint. We estimate the regression function by using the local linear technique and propose quasi-likelihood estimating equations for both the mean and covariance structures. Moreover, asymptotic normality of the resulting estimators is established. Finally, simulation study and real data analysis are used to illustrate the proposed approach.  相似文献   

18.
Partial linear single-index model (PLSIM) has both the flexibility of nonparametric treatment and interpretability of linear term, yet existing literatures about it mainly focused on mean regression, and quantile regression analysis is scarce. Based on free knot spline approximation, we apply asymmetric Laplace distribution to implement Bayesian quantile regression, and perform variable selection in linear term and index vector via binary indicators. Our approach is exempt from regularity conditions in frequentist method, and could execute variable selection and quantile regression under mutual posterior correction, which is also the first work to implement them jointly for PLSIM in fully Bayesian framework. The numerical simulation manifests the superiority of our approach to previous methods, which embodied in better efficiency of variable selection, index vector estimates and link function approximation with different error distributions. For illustration of its application, we build a power consumption model of A2/O process in wastewater treatment and emphatically analyze the impact of water quality factors.  相似文献   

19.
A method for robustness in linear models is to assume that there is a mixture of standard and outlier observations with a different error variance for each class. For generalised linear models (GLMs) the mixture model approach is more difficult as the error variance for many distributions has a fixed relationship to the mean. This model is extended to GLMs by changing the classes to one where the standard class is a standard GLM and the outlier class which is an overdispersed GLM achieved by including a random effect term in the linear predictor. The advantages of this method are it can be extended to any model with a linear predictor, and outlier observations can be easily identified. Using simulation the model is compared to an M-estimator, and found to have improved bias and coverage. The method is demonstrated on three examples.  相似文献   

20.
There is considerable interest in understanding how factors such as time and geographic distance between isolates might influence the evolutionary direction of foot‐and‐mouth disease. Genetic differences between viruses can be measured as the proportion of nucleotides that differ for a given sequence or gene. We present a Bayesian hierarchical regression model for the statistical analysis of continuous data with sample space restricted to the interval (0, 1). The data are modelled using beta distributions with means that depend on covariates through a link function. We discuss methodology for: (i) the incorporation of informative prior information into an analysis; (ii) fitting the model using Markov chain Monte Carlo sampling; (iii) model selection using Bayes factors; and (iv) semiparametric beta regression using penalized splines. The model was applied to two different datasets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号