首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of volatility forecasting studies have led to the perception that the ARCH- and Stochastic Volatility-type models provide poor out-of-sample forecasts of volatility. This is primarily based on the use of traditional forecast evaluation criteria concerning the accuracy and the unbiasedness of forecasts. In this paper we provide an analytical assessment of volatility forecasting performance. We use the volatility and log volatility framework to prove how the inherent noise in the approximation of the true- and unobservable-volatility by the squared return, results in a misleading forecast evaluation, inflating the observed mean squared forecast error and invalidating the Diebold-Mariano statistic. We analytically characterize this noise and explicitly quantify its effects assuming normal errors. We extend our results using more general error structures such as the Compound Normal and the Gram-Charlier classes of distributions. We argue that evaluation problems are likely to be exacerbated by non-normality of the shocks and that non-linear and utility-based criteria can be more suitable for the evaluation of volatility forecasts.  相似文献   

2.
《Econometric Reviews》2013,32(3):175-198
Abstract

A number of volatility forecasting studies have led to the perception that the ARCH- and Stochastic Volatility-type models provide poor out-of-sample forecasts of volatility. This is primarily based on the use of traditional forecast evaluation criteria concerning the accuracy and the unbiasedness of forecasts. In this paper we provide an analytical assessment of volatility forecasting performance. We use the volatility and log volatility framework to prove how the inherent noise in the approximation of the true- and unobservable-volatility by the squared return, results in a misleading forecast evaluation, inflating the observed mean squared forecast error and invalidating the Diebold–Mariano statistic. We analytically characterize this noise and explicitly quantify its effects assuming normal errors. We extend our results using more general error structures such as the Compound Normal and the Gram–Charlier classes of distributions. We argue that evaluation problems are likely to be exacerbated by non-normality of the shocks and that non-linear and utility-based criteria can be more suitable for the evaluation of volatility forecasts.  相似文献   

3.
4.
This article proposes a dynamic framework for modeling and forecasting of realized covariance matrices using vine copulas to allow for more flexible dependencies between assets. Our model automatically guarantees positive definiteness of the forecast through the use of a Cholesky decomposition of the realized covariance matrix. We explicitly account for long-memory behavior by using fractionally integrated autoregressive moving average (ARFIMA) and heterogeneous autoregressive (HAR) models for the individual elements of the decomposition. Furthermore, our model incorporates non-Gaussian innovations and GARCH effects, accounting for volatility clustering and unconditional kurtosis. The dependence structure between assets is studied using vine copula constructions, which allow for nonlinearity and asymmetry without suffering from an inflexible tail behavior or symmetry restrictions as in conventional multivariate models. Further, the copulas have a direct impact on the point forecasts of the realized covariances matrices, due to being computed as a nonlinear transformation of the forecasts for the Cholesky matrix. Beside studying in-sample properties, we assess the usefulness of our method in a one-day-ahead forecasting framework, comparing recent types of models for the realized covariance matrix based on a model confidence set approach. Additionally, we find that in Value-at-Risk (VaR) forecasting, vine models require less capital requirements due to smoother and more accurate forecasts.  相似文献   

5.
Abstract

An improved forecasting model by merging two different computational models in predicting future volatility was proposed. The model integrates wavelet and EGARCH model where the pre-processing activity based on wavelet transform is performed with de-noising technique to eliminate noise in observed signal. The denoised signal is then feed into EGARCH model to forecast the volatility. The predictive capability of the proposed model is compared with the existing EGARCH model. The results show that the hybrid model has increased the accuracy of forecasting future volatility.  相似文献   

6.
Abstract

To improve the empirical performance of the Black-Scholes model, many alternative models have been proposed to address leptokurtic feature, volatility smile, and volatility clustering effects of the asset return distributions. However, analytical tractability remains a problem for most alternative models. In this article, we study a class of hidden Markov models including Markov switching models and stochastic volatility models, that can incorporate leptokurtic feature, volatility clustering effects, as well as provide analytical solutions to option pricing. We show that these models can generate long memory phenomena when the transition probabilities depend on the time scale. We also provide an explicit analytic formula for the arbitrage-free price of the European options under these models. The issues of statistical estimation and errors in option pricing are also discussed in the Markov switching models.  相似文献   

7.
Recent advances in financial econometrics have allowed for the construction of efficient ex post measures of daily volatility. This paper investigates the importance of instability in models of realised volatility and their corresponding forecasts. Testing for model instability is conducted with a subsampling method. We show that removing structurally unstable data of a short duration has a negligible impact on the accuracy of conditional mean forecasts of volatility. In contrast, it does provide a substantial improvement in a model's forecast density of volatility. In addition, the forecasting performance improves, often dramatically, when we evaluate models on structurally stable data.  相似文献   

8.
In recent years, with the availability of high-frequency financial market data modeling realized volatility has become a new and innovative research direction. The construction of “observable” or realized volatility series from intra-day transaction data and the use of standard time-series techniques has lead to promising strategies for modeling and predicting (daily) volatility. In this article, we show that the residuals of commonly used time-series models for realized volatility and logarithmic realized variance exhibit non-Gaussianity and volatility clustering. We propose extensions to explicitly account for these properties and assess their relevance for modeling and forecasting realized volatility. In an empirical application for S&P 500 index futures we show that allowing for time-varying volatility of realized volatility and logarithmic realized variance substantially improves the fit as well as predictive performance. Furthermore, the distributional assumption for residuals plays a crucial role in density forecasting.  相似文献   

9.
The Volatility of Realized Volatility   总被引:4,自引:1,他引:3  
In recent years, with the availability of high-frequency financial market data modeling realized volatility has become a new and innovative research direction. The construction of “observable” or realized volatility series from intra-day transaction data and the use of standard time-series techniques has lead to promising strategies for modeling and predicting (daily) volatility. In this article, we show that the residuals of commonly used time-series models for realized volatility and logarithmic realized variance exhibit non-Gaussianity and volatility clustering. We propose extensions to explicitly account for these properties and assess their relevance for modeling and forecasting realized volatility. In an empirical application for S&P 500 index futures we show that allowing for time-varying volatility of realized volatility and logarithmic realized variance substantially improves the fit as well as predictive performance. Furthermore, the distributional assumption for residuals plays a crucial role in density forecasting.  相似文献   

10.
This article introduces four models of conditional heteroscedasticity that contain Markov-switching parameters to examine their multiperiod stock-market volatility forecasts as predictions of options-implied volatilities. The volatility model that best predicts the behavior of the options-implied volatilities allows the Student-t degrees-of-freedom parameter to switch such that the conditional variance and kurtosis are subject to discrete shifts. The half-life of the most leptokurtic state is estimated to be a week, so expected market volatility reverts to near-normal levels fairly quickly following a spike.  相似文献   

11.
For financial volatilities such as realized volatility and volatility index, a new parametric quantile forecast strategy is proposed, focusing on forecast interval and value at risk (VaR) forecast. This fully addresses asymmetries in 3 parts: mean, volatility and distribution. The asymmetries are addressed by the LHAR (leverage heterogeneous autoregressive) model of McAleer and Medeiros (2008) and Corsi and Reno (2009) for the mean part, by the EGARCH model for the volatility part, and by the skew-t distribution for the error distribution part. The method is applied to the realized volatilities and the volatility indexes of the US S&P 500 index, the US NASDAQ index, the Korea KOSPI index in which significant asymmetries are identified. Considerable out-of-sample forecast improvements of the forecast interval and VaR forecast are demonstrated for the volatilities: forecast intervals of volatilities have better coverages with shorter lengths and VaR forecasts of volatility indexes have better violations if asymmetries are properly addressed rather than ignored. The proposed parametric method reveals considerably better out-of-sample performance than the recently proposed semiparametric quantile regression approach of Zikes and Barunik (2016).  相似文献   

12.
We propose a parametric nonlinear time-series model, namely the Autoregressive-Stochastic volatility with threshold (AR-SVT) model with mean equation for forecasting level and volatility. Methodology for estimation of parameters of this model is developed by first obtaining recursive Kalman filter time-update equation and then employing the unrestricted quasi-maximum likelihood method. Furthermore, optimal one-step and two-step-ahead out-of-sample forecasts formulae along with forecast error variances are derived analytically by recursive use of conditional expectation and variance. As an illustration, volatile all-India monthly spices export during the period January 2006 to January 2012 is considered. Entire data analysis is carried out using EViews and matrix laboratory (MATLAB) software packages. The AR-SVT model is fitted and interval forecasts for 10 hold-out data points are obtained. Superiority of this model for describing and forecasting over other competing models for volatility, namely AR-Generalized autoregressive conditional heteroscedastic, AR-Exponential GARCH, AR-Threshold GARCH, and AR-Stochastic volatility models is shown for the data under consideration. Finally, for the AR-SVT model, optimal out-of-sample forecasts along with forecasts of one-step-ahead variances are obtained.  相似文献   

13.
I explain why at-the-money implied volatility is a biased and inefficient forecast of future realized volatility using the insights from the empirical option-pricing literature. First, I explain how the risk premia, which manifest themselves through disparity between objective and risk-neutral probability measures, lead to the disparity between realized and implied volatilities. Second, I show that this disparity is a function of the latent spot volatility, which I estimate using the historical volatility and high–low range. An empirical exercise that is based on at-the-money implied volatility series of foreign currencies and stock market indexes, is supportive of my risk premia-based explanation of the bias.  相似文献   

14.
Forecast methods for realized volatilities are reviewed. Basic theoretical and empirical features of realized volatilities as well as versions of estimators of realized volatility are briefly investigated. Major forecast models featuring the empirical aspects of persistency and asymmetry are discussed in terms of forecasting models for which the heterogeneous autoregressive (HAR) model is one of the most basic one in the recent literature. Forecast methods addressing the issues of jump, break, implied volatility, and market microstructure noise are reviewed. Forecasting realized covariance matrix is also considered.  相似文献   

15.
This article reviews the exciting and rapidly expanding literature on realized volatility. After presenting a general univariate framework for estimating realized volatilities, a simple discrete time model is presented in order to motivate the main results. A continuous time specification provides the theoretical foundation for the main results in this literature. Cases with and without microstructure noise are considered, and it is shown how microstructure noise can cause severe problems in terms of consistent estimation of the daily realized volatility. Independent and dependent noise processes are examined. The most important methods for providing consistent estimators are presented, and a critical exposition of different techniques is given. The finite sample properties are discussed in comparison with their asymptotic properties. A multivariate model is presented to discuss estimation of the realized covariances. Various issues relating to modelling and forecasting realized volatilities are considered. The main empirical findings using univariate and multivariate methods are summarized.  相似文献   

16.
ARFIMAX models are applied in estimating the intra-day realized volatility of the CAC40 and DAX30 indices. Volatility clustering and asymmetry characterize the logarithmic realized volatility of both the indices. The ARFIMAX model with time-varying conditional heteroskedasticity is the best performing specification and, at least in the case of DAX30, provides statistically superior next trading day's realized volatility forecasts.  相似文献   

17.
Realized Volatility: A Review   总被引:1,自引:1,他引:0  
This article reviews the exciting and rapidly expanding literature on realized volatility. After presenting a general univariate framework for estimating realized volatilities, a simple discrete time model is presented in order to motivate the main results. A continuous time specification provides the theoretical foundation for the main results in this literature. Cases with and without microstructure noise are considered, and it is shown how microstructure noise can cause severe problems in terms of consistent estimation of the daily realized volatility. Independent and dependent noise processes are examined. The most important methods for providing consistent estimators are presented, and a critical exposition of different techniques is given. The finite sample properties are discussed in comparison with their asymptotic properties. A multivariate model is presented to discuss estimation of the realized covariances. Various issues relating to modelling and forecasting realized volatilities are considered. The main empirical findings using univariate and multivariate methods are summarized.  相似文献   

18.
Abstract

Based on the fact that realized measures of volatility are affected by measurement errors, we introduce a new family of discrete-time stochastic volatility models having two measurement equations relating both observed returns and realized measures to the latent conditional variance. A semi-analytical option pricing framework is developed for this class of models. In addition, we provide analytical filtering and smoothing recursions for the basic specification of the model, and an effective MCMC algorithm for its richer variants. The empirical analysis shows the effectiveness of filtering and smoothing realized measures in inflating the latent volatility persistence—the crucial parameter in pricing Standard and Poor’s 500 Index options.  相似文献   

19.
This article introduces the Markov-Switching Multifractal Duration (MSMD) model by adapting the MSM stochastic volatility model of Calvet and Fisher (2004) to the duration setting. Although the MSMD process is exponential β-mixing as we show in the article, it is capable of generating highly persistent autocorrelation. We study, analytically and by simulation, how this feature of durations generated by the MSMD process propagates to counts and realized volatility. We employ a quasi-maximum likelihood estimator of the MSMD parameters based on the Whittle approximation and establish its strong consistency and asymptotic normality for general MSMD specifications. We show that the Whittle estimation is a computationally simple and fast alternative to maximum likelihood. Finally, we compare the performance of the MSMD model with competing short- and long-memory duration models in an out-of-sample forecasting exercise based on price durations of three major foreign exchange futures contracts. The results of the comparison show that the MSMD and the Long Memory Stochastic Duration model perform similarly and are superior to the short-memory Autoregressive Conditional Duration models.  相似文献   

20.
Multi-asset modelling is of fundamental importance to financial applications such as risk management and portfolio selection. In this article, we propose a multivariate stochastic volatility modelling framework with a parsimonious and interpretable correlation structure. Building on well-established evidence of common volatility factors among individual assets, we consider a multivariate diffusion process with a common-factor structure in the volatility innovations. Upon substituting an observable market proxy for the common volatility factor, we markedly improve the estimation of several model parameters and latent volatilities. The model is applied to a portfolio of several important constituents of the S&P500 in the financial sector, with the VIX index as the common-factor proxy. We find that the prediction intervals for asset forecasts are comparable to those of more complex dependence models, but that option-pricing uncertainty can be greatly reduced by adopting a common-volatility structure. The Canadian Journal of Statistics 48: 36–61; 2020 © 2020 Statistical Society of Canada  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号