首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In this article, we will study the strong laws of large numbers and asymptotic equipartition property (AEP) for mth-order asymptotic odd–even Markov chains indexed by an m-rooted Cayley tree. First, the definition of mth-order asymptotic odd–even Markov chains indexed by an m-rooted Cayley tree is introduced, then the strong limit theorem for this Markov chains is established. Next, the strong laws of large numbers for the frequencies of ordered couple of states for mth-order asymptotic odd–even Markov chains indexed by an m-rooted Cayley tree are obtained. Finally, we prove the AEP for this Markov chains.  相似文献   

2.
In this paper we apply the sequential bootstrap method proposed by Collet et al. [Bootstrap Central Limit theorem for chains of infinite order via Markov approximations, Markov Processes and Related Fields 11(3) (2005), pp. 443–464] to estimate the variance of the empirical mean of a special class of chains of infinite order called sparse chains. For this process, we show that we are able to compute numerically the true value of the standard error with any fixed error.

Our main goal is to present a comparison, for sparse chains, among sequential bootstrap, the block bootstrap method proposed by Künsch [The jackknife and the Bootstrap for general stationary observations, Ann. Statist. 17 (1989), pp. 1217–1241] and improved by Liu and Singh [Moving blocks jackknife and Bootstrap capture week dependence, in Exploring the limits of the Bootstrap, R. Lepage and L. Billard, eds., Wiley, New York, 1992, pp. 225–248] and the bootstrap method proposed by Bühlmann [Blockwise bootstrapped empirical process for stationary sequences, Ann. Statist. 22 (1994), pp. 995–1012].  相似文献   

3.
《随机性模型》2013,29(4):459-489
A functional central limit theorem for a class of time-homogeneous continuous-time Markov processes (X,Y) is proved. The process X is a positive recurrent Markov process on a countable-state space and the process Y has conditionally independent increments given X. The pair (X,Y) is called a Markov additive process. This paper unifies and generalizes several functional central limit theorems for Markov additive processes. An explicit expression for the variance parameter of the limit process is calculated using the local characteristics of the X process. The functional central limit theorem is then used to prove a heavy traffic limit theorem for the closed Lu–Kumar network.  相似文献   

4.
Different longitudinal study designs require different statistical analysis methods and different methods of sample size determination. Statistical power analysis is a flexible approach to sample size determination for longitudinal studies. However, different power analyses are required for different statistical tests which arises from the difference between different statistical methods. In this paper, the simulation-based power calculations of F-tests with Containment, Kenward-Roger or Satterthwaite approximation of degrees of freedom are examined for sample size determination in the context of a special case of linear mixed models (LMMs), which is frequently used in the analysis of longitudinal data. Essentially, the roles of some factors, such as variance–covariance structure of random effects [unstructured UN or factor analytic FA0], autocorrelation structure among errors over time [independent IND, first-order autoregressive AR1 or first-order moving average MA1], parameter estimation methods [maximum likelihood ML and restricted maximum likelihood REML] and iterative algorithms [ridge-stabilized Newton-Raphson and Quasi-Newton] on statistical power of approximate F-tests in the LMM are examined together, which has not been considered previously. The greatest factor affecting statistical power is found to be the variance–covariance structure of random effects in the LMM. It appears that the simulation-based analysis in this study gives an interesting insight into statistical power of approximate F-tests for fixed effects in LMMs for longitudinal data.  相似文献   

5.
The magnitude-frequency distribution (MFD) of earthquake is a fundamental statistic in seismology. The so-called b-value in the MFD is of particular interest in geophysics. A continuous time hidden Markov model (HMM) is proposed for characterizing the variability of b-values. The HMM-based approach to modeling the MFD has some appealing properties over the widely used sliding-window approach. Often, large variability appears in the estimation of b-value due to window size tuning, which may cause difficulties in interpretation of b-value heterogeneities. Continuous-time hidden Markov models (CT-HMMs) are widely applied in various fields. It bears some advantages over its discrete time counterpart in that it can characterize heterogeneities appearing in time series in a finer time scale, particularly for highly irregularly-spaced time series, such as earthquake occurrences. We demonstrate an expectation–maximization algorithm for the estimation of general exponential family CT-HMM. In parallel with discrete-time hidden Markov models, we develop a continuous time version of Viterbi algorithm to retrieve the overall optimal path of the latent Markov chain. The methods are applied to New Zealand deep earthquakes. Before the analysis, we first assess the completeness of catalogue events to assure the analysis is not biased by missing data. The estimation of b-value is stable over the selection of magnitude thresholds, which is ideal for the interpretation of b-value variability.  相似文献   

6.
In this article, we introduce and study Markov systems on general spaces (MSGS) as a first step of an entire theory on the subject. Also, all the concepts and basic results needed for this scope are given and analyzed. This could be thought of as an extension of the theory of a non homogeneous Markov system (NHMS) and that of a non homogeneous semi-Markov system on countable spaces, which has realized an interesting growth in the last thirty years. In addition, we study the asymptotic behaviour or ergodicity of Markov systems on general state spaces. The problem of asymptotic behaviour of Markov chains has been central for finite or countable spaces since the foundation of the subject. It has also been basic in the theory of NHMS and NHSMS. Two basic theorems are provided in answering the important problem of the asymptotic distribution of the population of the memberships of a Markov system that lives in the general space (X, ?(X)). Finally, we study the total variability from the invariant measure of the Markov system given that there exists an asymptotic behaviour. We prove a theorem which states that the total variation is finite. This problem is known also as the coupling problem.  相似文献   

7.
While standard techniques are available for the analysis of time-series (longitudinal) data, and for ordinal (rating) data, not much is available for the combination of the two, at least in a readily-usable form. However, this data type is common place in the natural and health sciences where repeated ratings are recorded on the same subject. To analyse these data, this paper considers a transition (Markov) model where the rating of a subject at one time depends explicitly on the observed rating at the previous point of time by incorporating the previous rating as a predictor variable. Complications arise with adequate handling of data at the first observation (t=1), as there is no prior observation to use as a predictor. To overcome this, it is postulated the existence of a rating at time t=0; however it is treated as ‘missing data’ and the expectation–maximisation algorithm used to accommodate this. The particular benefits of this method are shown for shorter time series.  相似文献   

8.
Most biomedical research is carried out using longitudinal studies. The method of generalized estimating equations (GEEs) introduced by Liang and Zeger [Longitudinal data analysis using generalized linear models, Biometrika 73 (1986), pp. 13–22] and Zeger and Liang [Longitudinal data analysis for discrete and continuous outcomes, Biometrics 42 (1986), pp. 121–130] has become a standard method for analyzing non-normal longitudinal data. Since then, a large variety of GEEs have been proposed. However, the model diagnostic problem has not been explored intensively. Oh et al. [Modeldiagnostic plots for repeated measures data using the generalized estimating equations approach, Comput. Statist. Data Anal. 53 (2008), pp. 222–232] proposed residual plots based on the quantile–quantile (Q–Q) plots of the χ2-distribution for repeated-measures data using the GEE methodology. They considered the Pearson, Anscombe and deviance residuals. In this work, we propose to extend this graphical diagnostic using a generalized residual. A simulation study is presented as well as two examples illustrating the proposed generalized Q–Q plots.  相似文献   

9.
10.
Prognostic studies are essential to understand the role of particular prognostic factors and, thus, improve prognosis. In most studies, disease progression trajectories of individual patients may end up with one of mutually exclusive endpoints or can involve a sequence of different events.

One challenge in such studies concerns separating the effects of putative prognostic factors on these different endpoints and testing the differences between these effects.

In this article, we systematically evaluate and compare, through simulations, the performance of three alternative multivariable regression approaches in analyzing competing risks and multiple-event longitudinal data. The three approaches are: (1) fitting separate event-specific Cox's proportional hazards models; (2) the extension of Cox's model to competing risks proposed by Lunn and McNeil; and (3) Markov multi-state model.

The simulation design is based on a prognostic study of cancer progression, and several simulated scenarios help investigate different methodological issues relevant to the modeling of multiple-event processes of disease progression. The results highlight some practically important issues. Specifically, the decreased precision of the observed timing of intermediary (non fatal) events has a strong negative impact on the accuracy of regression coefficients estimated with either the Cox's or Lunn-McNeil models, while the Markov model appears to be quite robust, under the same circumstances. Furthermore, the tests based on both Markov and Lunn-McNeil models had similar power for detecting a difference between the effects of the same covariate on the hazards of two mutually exclusive events. The Markov approach yields also accurate Type I error rate and good empirical power for testing the hypothesis that the effect of a prognostic factor on changes after an intermediary event, which cannot be directly tested with the Lunn-McNeil method. Bootstrap-based standard errors improve the coverage rates for Markov model estimates. Overall, the results of our simulations validate Markov multi-state model for a wide range of data structures encountered in prognostic studies of disease progression, and may guide end users regarding the choice of model(s) most appropriate for their specific application.  相似文献   

11.
Clinical trials are often designed to compare continuous non‐normal outcomes. The conventional statistical method for such a comparison is a non‐parametric Mann–Whitney test, which provides a P‐value for testing the hypothesis that the distributions of both treatment groups are identical, but does not provide a simple and straightforward estimate of treatment effect. For that, Hodges and Lehmann proposed estimating the shift parameter between two populations and its confidence interval (CI). However, such a shift parameter does not have a straightforward interpretation, and its CI contains zero in some cases when Mann–Whitney test produces a significant result. To overcome the aforementioned problems, we introduce the use of the win ratio for analysing such data. Patients in the new and control treatment are formed into all possible pairs. For each pair, the new treatment patient is labelled a ‘winner’ or a ‘loser’ if it is known who had the more favourable outcome. The win ratio is the total number of winners divided by the total numbers of losers. A 95% CI for the win ratio can be obtained using the bootstrap method. Statistical properties of the win ratio statistic are investigated using two real trial data sets and six simulation studies. Results show that the win ratio method has about the same power as the Mann–Whitney method. We recommend the use of the win ratio method for estimating the treatment effect (and CI) and the Mann–Whitney method for calculating the P‐value for comparing continuous non‐Normal outcomes when the amount of tied pairs is small. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
《随机性模型》2013,29(1):75-111
In this paper, we study the classification problem of discrete time and continuous time Markov processes with a tree structure. We first show some useful properties associated with the fixed points of a nondecreasing mapping. Mainly we find the conditions for a fixed point to be the minimal fixed point by using fixed point theory and degree theory. We then use these results to identify conditions for Markov chains of M/G/1 type or GI/M/1 type with a tree structure to be positive recurrent, null recurrent, or transient. The results are generalized to Markov chains of matrix M/G/1 type with a tree structure. For all these cases, a relationship between a certain fixed point, the matrix of partial differentiation (Jacobian) associated with the fixed point, and the classification of the Markov chain with a tree structure is established. More specifically, we show that the Perron-Frobenius eigenvalue of the matrix of partial differentiation associated with a certain fixed point provides information for a complete classification of the Markov chains of interest.  相似文献   

13.
ABSTRACT

In this article, we study a class of small deviation theorems for the random variables associated with mth-order asymptotic circular Markov chains. First, the definition of mth-order asymptotic circular Markov chain is introduced, then by applying the known results of the limit theorem for mth-order non homogeneous Markov chain, the small deviation theorem on the frequencies of occurrence of states for mth-order asymptotic circular Markov chains is established. Next, the strong law of large numbers and asymptotic equipartition property for this Markov chains are obtained. Finally, some results of mth-order nonhomogeneous Markov chains are given.  相似文献   

14.
Mixture of linear mixed-effects models has received considerable attention in longitudinal studies, including medical research, social science and economics. The inferential question of interest is often the identification of critical factors that affect the responses. We consider a Bayesian approach to select the important fixed and random effects in the finite mixture of linear mixed-effects models. To accomplish our goal, latent variables are introduced to facilitate the identification of influential fixed and random components and to classify the membership of observations in the longitudinal data. A spike-and-slab prior for the regression coefficients is adopted to sidestep the potential complications of highly collinear covariates and to handle large p and small n issues in the variable selection problems. Here we employ Markov chain Monte Carlo (MCMC) sampling techniques for posterior inferences and explore the performance of the proposed method in simulation studies, followed by an actual psychiatric data analysis concerning depressive disorder.  相似文献   

15.
The Galton–Watson process is a Markov chain modeling the population size of independently reproducing particles giving birth to k offspring with probability pk, k ? 0. In this paper, we consider defective Galton–Watson processes having defective reproduction laws, so that ∑k ? 0pk = 1 ? ? for some ? ∈ (0, 1). In this setting, each particle may send the process to a graveyard state Δ with probability ?. Such a Markov chain, having an enhanced state space {0, 1, …}∪{Δ}, gets eventually absorbed either at 0 or at Δ. Assuming that the process has avoided absorption until the observation time t, we are interested in its trajectories as t → ∞ and ? → 0.  相似文献   

16.
An important problem in statistics is the study of longitudinal data taking into account the effect of other explanatory variables such as treatments and time. In this paper, a new Bayesian approach for analysing longitudinal data is proposed. This innovative approach takes into account the possibility of having nonlinear regression structures on the mean and linear regression structures on the variance–covariance matrix of normal observations, and it is based on the modelling strategy suggested by Pourahmadi [M. Pourahmadi, Joint mean-covariance models with applications to longitudinal data: Unconstrained parameterizations, Biometrika, 87 (1999), pp. 667–690.]. We initially extend the classical methodology to accommodate the fitting of nonlinear mean models then we propose our Bayesian approach based on a generalization of the Metropolis–Hastings algorithm of Cepeda [E.C. Cepeda, Variability modeling in generalized linear models, Unpublished Ph.D. Thesis, Mathematics Institute, Universidade Federal do Rio de Janeiro, 2001]. Finally, we illustrate the proposed methodology by analysing one example, the cattle data set, that is used to study cattle growth.  相似文献   

17.
A random effects model for analyzing mixed longitudinal normal and count outcomes with and without the possibility of non ignorable missing outcomes is presented. The count response is inflated in two points (k and l) and the (k, l)-Hurdle power series is used as its distribution. The new distribution contains, as special submodels, several important distributions which are discussed, such as (k, l)-Hurdle Poisson and (k, l)-Hurdle negative binomial and (k, l)-Hurdle binomial distributions among others. Random effects are used to take into account the correlation between longitudinal outcomes and inflation parameters. A full likelihood-based approach is used to yield maximum likelihood estimates of the model parameters. A simulation study is performed in which for count outcome (k, l)-Hurdle Poisson, (k, l)-Hurdle negative binomial and (k, l)-Hurdle binomial distributions are considered. To illustrate the application of such modelling the longitudinal data of body mass index and the number of joint damage are analyzed.  相似文献   

18.
《随机性模型》2013,29(2-3):725-744
Abstract

We propose a method to approximate the transient performance measures of a discrete time queueing system via a steady state analysis. The main idea is to approximate the system state at time slot t or on the n-th arrival–-depending on whether we are studying the transient queue length or waiting time distribution–-by the system state after a negative binomially distributed number of slots or arrivals. By increasing the number of phases k of the negative binomial distribution, an accurate approximation of the transient distribution of interest can be obtained.

In order to efficiently obtain the system state after a negative binomially distributed number of slots or arrivals, we introduce so-called reset Markov chains, by inserting reset events into the evolution of the queueing system under consideration. When computing the steady state vector of such a reset Markov chain, we exploit the block triangular block Toeplitz structure of the transition matrices involved and we directly obtain the approximation from its steady state vector. The concept of the reset Markov chains can be applied to a broad class of queueing systems and is demonstrated in full detail on a discrete-time queue with Markovian arrivals and phase-type services (i.e., the D-MAP/PH/1 queue). We focus on the queue length distribution at time t and the waiting time distribution of the n-th customer. Other distributions, e.g., the amount of work left behind by the n-th customer, that can be acquired in a similar way, are briefly touched upon.

Using various numerical examples, it is shown that the method provides good to excellent approximations at low computational costs–-as opposed to a recursive algorithm or a numerical inversion of the Laplace transform or generating function involved–-offering new perspectives to the transient analysis of practical queueing systems.  相似文献   

19.
In this paper, we present a study about the estimation of the serial correlation for Markov chain models which is used often in the quality control of autocorrelated processes. Two estimators, non-parametric and multinomial, for the correlation coefficient are discussed. They are compared with the maximum likelihood estimator [U.N. Bhat and R. Lal, Attribute control charts for Markov dependent production process, IIE Trans. 22 (2) (1990), pp. 181–188.] by using some theoretical facts and the Monte Carlo simulation under several scenarios that consider large and small correlations as well a range of fractions (p) of non-conforming items. The theoretical results show that for any value of p≠0.5 and processes with autocorrelation higher than 0.5, the multinomial is more precise than maximum likelihood. However, the maximum likelihood is better when the autocorrelation is smaller than 0.5. The estimators are similar for p=0.5. Considering the average of all simulated scenarios, the multinomial estimator presented lower mean error values and higher precision, being, therefore, an alternative to estimate the serial correlation. The performance of the non-parametric estimator was reasonable only for correlation higher than 0.5, with some improvement for p=0.5.  相似文献   

20.
We prove Berry–Esséen bound for sample quantiles of Markov chains with spectral gap in L2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号